Einshape: DSL-based reshaping library for JAX and other frameworks.

Related tags

Deep Learningeinshape
Overview

Einshape: DSL-based reshaping library for JAX and other frameworks.

The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot ops. This einshape library is designed to offer a similar DSL-based approach to unifying reshape, squeeze, expand_dims, and transpose operations.

Some examples:

  • einshape("n->n111", x) is equivalent to expand_dims(x, axis=1) three times
  • einshape("a1b11->ab", x) is equivalent to squeeze(x, axis=[1,3,4])
  • einshape("nhwc->nchw", x) is equivalent to transpose(x, perm=[0,3,1,2])
  • einshape("mnhwc->(mn)hwc", x) is equivalent to a reshape combining the two leading dimensions
  • einshape("(mn)hwc->mnhwc", x, n=batch_size) is equivalent to a reshape splitting the leading dimension into two, using kwargs (m or n or both) to supply the necessary additional shape information
  • einshape("mn...->(mn)...", x) combines the two leading dimensions without knowing the rank of x
  • einshape("n...->n(...)", x) performs a 'batch flatten'
  • einshape("ij->ijk", x, k=3) inserts a trailing dimension and tiles along it
  • einshape("ij->i(nj)", x, n=3) tiles along the second dimension

See jax_ops.py for the JAX implementation of the einshape function. Alternatively, the parser and engine are exposed in engine.py allowing analogous implementations in TensorFlow or other frameworks.

Installation

Einshape can be installed with the following command:

pip3 install git+https://github.com/deepmind/einshape

Einshape will work with either Jax or TensorFlow. To allow for that it does not list either as a requirement, so it is necessary to ensure that Jax or TensorFlow is installed separately.

Usage

Jax version:

(ij)", a) # b is [1, 2, 3, 4] ">
from einshape import jax_einshape as einshape
from jax import numpy as jnp

a = jnp.array([[1, 2], [3, 4]])
b = einshape("ij->(ij)", a)
# b is [1, 2, 3, 4]

TensorFlow version:

(ij)", a) # b is [1, 2, 3, 4] ">
from einshape import tf_einshape as einshape
import tensorflow as tf

a = tf.constant([[1, 2], [3, 4]])
b = einshape("ij->(ij)", a)
# b is [1, 2, 3, 4]

Understanding einshape equations

An einshape equation is always of the form {lhs}->{rhs}, where {lhs} and {rhs} both stand for expressions. An expression represents the axes of an array; the relationship between two expressions illustrate how an array should be transformed.

An expression is a non-empty sequence of the following elements:

Index name

A single letter a-z, representing one axis of an array.

For example, the expressions ab and jq both represent an array of rank 2.

Every index name that is present on the left-hand side of an equation must also be present on the right-hand side. So, ab->a is not a valid equation, but a->ba is valid (and will tile a vector b times).

Ellipsis

..., representing any axes of an array that are not otherwise represented in the expression. This is similar to the use of -1 as an axis in a reshape operation.

For example, a...b can represent any array of rank 2 or more: a will refer to the first axis and b to the last. The equation ...ab->...ba will swap the last two axes of an array.

An expression may not include more than one ellipsis (because that would be ambiguous). Like an index name, an ellipsis must be present in both halves of an equation or neither.

Group

({components}), where components is a sequence of index names and ellipsis elements. The entire group corresponds to a single axis of the array; the group's components represent factors of the axis size. This can be used to reshape an axis into many axes. All the factors except at most one must be specified using keyword arguments.

For example, einshape('(ab)->ab', x, a=10) reshapes an array of rank 1 (whose length must be a multiple of 10) into an array of rank 2 (whose first dimension is of length 10).

Groups may not be nested.

Unit

The digit 1, representing a single axis of length 1. This is useful for expanding and squeezing unit dimensions.

For example, the equation 1...->... squeezes a leading axis (which must have length one).

Disclaimer

This is not an official Google product.

Einshape Logo

Owner
DeepMind
DeepMind
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
cl;asification problem using classification models in supervised learning

wine-quality-predition---classification cl;asification problem using classification models in supervised learning Wine Quality Prediction Analysis - C

Vineeth Reddy Gangula 1 Jan 18, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022