Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Overview

Transformers

Arabic licence plate recognition πŸš—

  • Solution to the kaggle competition Machathon 3.0.
  • Ranked in the top 6️⃣ at the final evaluation phase.
  • Check our solution now on collab!
  • Check the solution presentation

Preprocessing Pipeline

The schematic of the processor

Approach

Step1: Preprocessing Enhancments on the image.

  • Most images had bad illumination and noise
    • Morphological operations to Maximize Contrast.
    • Gaussian Blur to remove Noise.
  • Thresholding on both Value and Saturation channels.

Step2: Extracting white plate using countours.

  • Get countours and sort based on Area.
  • Polygon Approximation For noisy countours.
  • Convex hull for Concave polygons.
  • 4-Point transformation For difficult camera angles.

Now have numbers in a countor and letters in another.

Step3: Separating characters from white plate using sliding windows.

Can't use countours to get symbols in white plate since Arabic Letter may consist of multiple charachters e.g Ψͺ this may consist of 2/3 countours.

Solution

  • Tuned 2 sliding windows, one for letters' white plate, the other for numbers.
    • Variable window width
    • Window height is the white plate height, since arabic characters may consist multiple parts
  • Selecting which window
    • Must have no black pixels on the sides
    • Must have a specific range of black pixels inside
    • For each group of windows the one with max black pixels is selected

Step4: Character Recognition.

  • Training 2 model since Arabic letters and numbers are similar e.g (Ψ£,1) (5, Ω‡)
    • one for classifing only arabic letters.
    • one for classifying arabic numbers.

Project Organization

Scripts applied on images

./Macathon/code/
β”œβ”€β”€ extract_bbx_xml.ipynb                       : Takes directory of images and their bbx data stored in an xml files, and crop the bbxs from the images.
|                                                 The xml file contains licence label(name), xmin, ymin, xmax, ymax of the bbxs in an image.    
β”œβ”€β”€ extract_bbx_txt.ipynb                       : Takes directory of images and their bbx data stored in a txt files, and crop the bbxs from the images.
|                                                 The txt file corresponding to one image may consist of multiple bbxs, each corresponds to a row of xmin,ymin,xmax,ymax for that bbx.
└── crop_right_noise.ipynb                      : Crops an image with some percentage and replace with the cropped image. 

Model versions

./Macathon/code/
└── model.ipynb                      : - The preprocessing and modeling stage, Contains:
                                          - Preprocessing Functions
                                          - Training both classifers
                                          - Prediction and generating the output csv file

Data Folder

./Macathon/data/
β”œβ”€β”€ challenging_images.rar                      : Contains most challenging images collected from the train data. 
β”œβ”€β”€ cropped_letters.zip                         : 28 Subfolders corresponding to the 28 letter in Arabic alphabet.
|                                                 Each subfolder holds images for the letter it's named after, cropped from the train data distribution.
β”œβ”€β”€ cropped_numbers.zip                         : 10 Subfolders for the 10 numbers.
|                                                 Each subfolder holds images for the number it's named after, cropped from the train data distribution.
β”œβ”€β”€ machathon-3.zip                             : The uploaded data found with the kaggle competition.
└── testLetters.zip                             : 200 images labeled from the test data distribution.
                                                  Each image has a corresponding xml file holding the bbxs locations in it.

Contributors

This masterpiece was designed, and implemented by

Hossam
Hossam Saeed
Mostafa wael
Mostafa Wael
Nada Elmasry
Nada Elmasry
Noran Hany
Noran Hany
Owner
Noran Hany
Noran Hany
Prompt Tuning with Rules

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
View model summaries in PyTorch!

torchinfo (formerly torch-summary) Torchinfo provides information complementary to what is provided by print(your_model) in PyTorch, similar to Tensor

Tyler Yep 1.5k Jan 05, 2023
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Unofficial PyTorch Implementation of "Augmenting Convolutional networks with attention-based aggregation"

Pytorch Implementation of Augmenting Convolutional networks with attention-based aggregation This is the unofficial PyTorch Implementation of "Augment

DK 20 Sep 09, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
Computations and statistics on manifolds with geometric structures.

Geomstats Code Continuous Integration Code coverage (numpy) Code coverage (autograd, tensorflow, pytorch) Documentation Community NEWS: Geomstats is r

875 Dec 31, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
Freecodecamp Scientific Computing with Python Certification; Solution for Challenge 2: Time Calculator

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Hellen Namulinda 0 Feb 26, 2022
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
Compare outputs between layers written in Tensorflow and layers written in Pytorch

Compare outputs of Wasserstein GANs between TensorFlow vs Pytorch This is our testing module for the implementation of improved WGAN in Pytorch Prereq

Hung Nguyen 72 Dec 20, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022