DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Related tags

Deep Learningdiffq
Overview

Differentiable Model Compression via Pseudo Quantization Noise

linter badge tests badge cov badge

DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Go read our paper for more details.

Requirements

DiffQ requires Python 3.7, and a reasonably recent version of PyTorch (1.7.1 ideally). To install DiffQ, you can run from the root of the repository:

pip install .

You can also install directly from PyPI with pip install diffq.

Usage

import torch
from torch.nn import functional as F
from diffq import DiffQuantizer

my_model = MyModel()
my_optim = ...  # The optimizer must be created before the quantizer
quantizer = DiffQuantizer(my_model)
quantizer.setup_optimizer(my_optim)

# Or, if you want to use a specific optimizer for DiffQ
quantizer.opt = torch.optim.Adam([{"params": []}])
quantizer.setup_optimizer(quantizer.opt)

# Distributed data parallel must be created after DiffQuantizer!
dmodel = torch.distributed.DistributedDataParallel(...)

# Then go on training as usual, just don't forget to call my_model.train() and my_model.eval().
penalty = 1e-3
for batch in loader:
    ...
    my_optim.zero_grad()
    # If you used a separate optimizer for DiffQ, call
    # quantizer.opt.zero_grad()

    # The `penalty` parameter here will control the tradeoff between model size and model accuracy.
    loss = F.mse_loss(x, y) + penalty * quantizer.model_size()
    my_optim.step()
    # If you used a separate optimizer for DiffQ, call
    # quantizer.opt.step()

# To get the true "naive" model size call
quantizer.true_model_size()

# To get the gzipped model size without actually dumping to disk
quantizer.compressed_model_size()

# When you want to dump your final model:
torch.save(quantizer.get_quantized_state(), "some_file.th")
# DiffQ will not optimally code integers. In order to actually get most
# of the gain in terms of size, you should call call `gzip some_file.th`.

# You can later load back the model with
quantizer.restore_quantized_state(torch.load("some_file.th"))

Documentation

See the API documentation.

Examples

We provide three examples in the examples/ folder. One is for CIFAR-10/100, using standard architecture such as Wide-ResNet, ResNet or MobileNet. The second is based on the DeiT visual transformer. The third is a language modeling task on Wikitext-103, using Fairseq

The DeiT and Fairseq examples are provided as a patch on the original codebase at a specific commit. You can initialize the git submodule and apply the patches by running

make examples

For more details on each example, go checkout their specific READMEs:

Installation for development

This will install the dependencies and a diffq in developer mode (changes to the files will directly reflect), along with the dependencies to run unit tests.

pip install -e '.[dev]'

Updating the patch based examples

In order to update the patches, first run make examples to properly initialize the sub repos. Then perform all the changes you want, commit them and run make patches. This will update the patches for each repo. Once this is done, and you checked that all the changes you did are properly included in the new patch files, you can run make reset (this will remove all your changes you did from the submodules, so do check the patch files before calling this) before calling git add -u .; git commit -m "my changes" and pushing.

Test

You can run the unit tests with

make tests

Citation

If you use this code or results in your paper, please cite our work as:

@article{defossez2021differentiable,
  title={Differentiable Model Compression via Pseudo Quantization Noise},
  author={D{\'e}fossez, Alexandre and Adi, Yossi and Synnaeve, Gabriel},
  journal={arXiv preprint arXiv:2104.09987},
  year={2021}
}

License

This repository is released under the CC-BY-NC 4.0. license as found in the LICENSE file, except for the following parts that is under the MIT license. The files examples/cifar/src/mobilenet.py and examples/cifar/src/src/resnet.py are taken from kuangliu/pytorch-cifar, released as MIT. The file examples/cifar/src/wide_resnet.py is taken from meliketoy/wide-resnet, released as MIT. See each file headers for the detailed license.

Owner
Facebook Research
Facebook Research
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

ClassSR (CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic Paper Authors: Xiangtao Kong, Hengyuan

Xiangtao Kong 308 Jan 05, 2023
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
A set of tests for evaluating large-scale algorithms for Wasserstein-2 transport maps computation.

Continuous Wasserstein-2 Benchmark This is the official Python implementation of the NeurIPS 2021 paper Do Neural Optimal Transport Solvers Work? A Co

Alexander 22 Dec 12, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

Tskit developers 150 Dec 14, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022