A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Overview

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset from nebula-shareholding-example.

corp-rel-capture.mov

Quick Start

First, please setup a Nebula Graph Cluster with data loaded from nebula-shareholding-example.

Then, clone this project:

git clone https://github.com/wey-gu/nebula-corp-rel-search.git
cd nebula-corp-rel-search

Start the backend:

python3 -m pip install -r requirements.txt
cd corp-rel-backend
export NG_ENDPOINTS="192.168.123.456:9669" # This should be your Nebula Graph Cluster GraphD Endpoint
python3 app.py

Start the frontend in another terminal:

npm install -g @vue/cli
cd nebula-corp-rel-search/corp-rel-frontend
vue serve src/main.js

Start a reverse Proxy to enable Corp-Rel Backend being served with same origin of Frontend:

For example below is a Nginx config to make :8081/ go to http://localhost:8080 and :8081/api go to http://192.168.123.456:5000/api.

http {
    include       mime.types;
    default_type  application/octet-stream;

    keepalive_timeout  65;

    server {
        listen       8081;
        server_name  localhost;
        # frontend
        location / {
            proxy_pass http://localhost:8080;
        }
        # backend
        location /api {
            proxy_pass http://192.168.123.456:5000/api;
        }
    }
#...

After above reverse proxy being configured, let's verify it via cURL:

curl --header "Content-Type: application/json" \
     --request POST \
     --data '{"entity": "c_132"}' \
     http://localhost:8081/api | jq

If it's properly responded, hen we could go to http://localhost:8081 from the web browser :).

Design Log

data from Backend Side

Backend should query node's relationship path as follow:

MATCH p=(v)-[e:hold_share|:is_branch_of|:reletive_with|:role_as*1..3]-(v2) \
WHERE id(v) IN ["c_132"] RETURN p LIMIT 100

An example of the query will be like this:

([email protected]) [shareholding]> MATCH p=(v)-[e:hold_share|:is_branch_of|:reletive_with|:role_as*1..3]-(v2) \
                           -> WHERE id(v) IN ["c_132"] RETURN p LIMIT 100
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| p                                                                                                                                                                                                                                        |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 0.0}]-("c_245" :corp{name: "Thompson-King"})>                                                                                                                             |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 3.0}]-("p_1039" :person{name: "Christian Miller"})>                                                                                                                       |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 3.0}]-("p_1399" :person{name: "Sharon Gonzalez"})>                                                                                                                        |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 9.0}]-("p_1767" :person{name: "Dr. David Vance"})>                                                                                                                        |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 11.0}]-("p_1997" :person{name: "Glenn Reed"})>                                                                                                                            |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| <("c_132" :corp{name: "Chambers LLC"})<-[:[email protected] {share: 14.0}]-("p_2341" :person{name: "Jessica Baker"})>                                                                                                                         |
+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
...

Leveraging nebula2-python, we could have result in below data structure:

$ python3 -m pip install nebula2-python==2.5.0
$ ipython
In [1]: from nebula2.gclient.net import ConnectionPool
In [2]: from nebula2.Config import Config
In [3]: config = Config()
   ...: config.max_connection_pool_size = 10
   ...: # init connection pool
   ...: connection_pool = ConnectionPool()
   ...: # if the given servers are ok, return true, else return false
   ...: ok = connection_pool.init([('192.168.8.137', 9669)], config)
   ...: session = connection_pool.get_session('root', 'nebula')
[2021-10-13 13:44:24,242]:Get connection to ('192.168.8.137', 9669)

In [4]: resp = session.execute("use shareholding")
In [5]: query = '''
   ...: MATCH p=(v)-[e:hold_share|:is_branch_of|:reletive_with|:role_as*1..3]-(v2) \
   ...: WHERE id(v) IN ["c_132"] RETURN p LIMIT 100
   ...: '''
In [6]: resp = session.execute(query) # Note: after nebula graph 2.6.0, we could use execute_json as well

In [7]: resp.col_size()
Out[7]: 1

In [9]: resp.row_size()
Out[10]: 100

As we know the result is actually a nebula-python path type, they could be extracted as follow with .nodes() and .relationships():

In [11]: p=resp.row_values(22)[0].as_path()

In [12]: p.nodes()
Out[12]:
[("c_132" :corp{name: "Chambers LLC"}),
 ("p_4000" :person{name: "Colton Bailey"})]

In [13]: p.relationships()
Out[13]: [("p_4000")-[:role_as@0{role: "Editorial assistant"}]->("c_132")]

For relationships/edges, we could call its .edge_name(), .properties(), .start_vertex_id(), .end_vertex_id():

In [14]: rel=p.relationships()[0]

In [15]: rel
Out[15]: ("p_4000")-[:role_as@0{role: "Editorial assistant"}]->("c_132")

In [16]: rel.edge_name()
Out[16]: 'role_as'

In [17]: rel.properties()
Out[17]: {'role': "Editorial assistant"}

In [18]: rel.start_vertex_id()
Out[18]: "p_4000"

In [19]: rel.end_vertex_id()
Out[19]: "c_132"

And for nodes/vertices, we could call its .tags(), properties, get_id():

In [20]: node=p.nodes()[0]

In [21]: node.tags()
Out[21]: ['corp']

In [22]: node.properties('corp')
Out[22]: {'name': "Chambers LLC"}

In [23]: node.get_id()
Out[23]: "c_132"

Data visualization

For the frontend, we could create a view by leveraging vue-network-d3:

npm install vue-network-d3 --save
touch src/App.vue
touch src/main.js

In src/App.vue, we create a Network instance and fill in the nodeList, and linkList fetched from backend, in below example, we put fake data as:

nodes: [
        {"id": "c_132", "name": "Chambers LLC", "tag": "corp"},
        {"id": "p_4000", "name": "Colton Bailey", "tag": "person"}],
relationships: [
        {"source": "p_4000", "target": "c_132", "properties": { "role": "Editorial assistant" }, "edge": "role_as"}]

And the full example of src/App.vue will be:

<template>
  <div id="app">
    <network
      :nodeList="nodes"
      :linkList="relationships"
      :nodeSize="nodeSize"
      :linkWidth="linkWidth"
      :linkDistance="linkDistance"
      :linkTextFrontSize="linkTextFrontSize"
      :nodeTypeKey="nodeTypeKey"
      :linkTypeKey="linkTypeKey"
      :nodeTextKey="nodeTextKey"
      :linkTextKey="linkTextKey"
      :showNodeText="showNodeText"
      :showLinkText="showLinkText"
      >
    </network>
  </div>
</template>

<script>
import Network from "vue-network-d3";

export default {
  name: "app",
  components: {
    Network
  },
  data() {
    return {
      nodes: [
        {"id": "c_132", "name": "Chambers LLC", "tag": "corp"},
        {"id": "p_4000", "name": "Colton Bailey", "tag": "person"}
      ],
      relationships: [
        {"source": "p_4000", "target": "c_132", "properties": { "role": "Editorial assistant" }, "edge": "role_as"}
      ],
      nodeSize: 18,
      linkDistance: 120,
      linkWidth: 6,
      linkTextFrontSize: 20,
      nodeTypeKey: "tag",
      linkTypeKey: "edge",
      nodeTextKey: "name",
      linkTextKey: "properties",
      showNodeText: true,
      showLinkText: true
    };
  },
};
</script>

<style>
body {
  margin: 0;
}
</style>

Together with src/main.js:

import Vue from 'vue'
import App from './App.vue'

Vue.config.productionTip = false

new Vue({
  render: h => h(App),
}).$mount('#app')

Then we could run: vue serve src/main.js to have this renderred:

vue-network-d3-demo

The data construction in Back End:

Thus we shoud know that if the backend provides list of nodes and relationships in JSON as the following, things are perfectly connected!

Nodes:

[{"id": "c_132", "name": "Chambers LLC", "tag": "corp"},
 {"id": "p_4000", "name": "Colton Bailey", "tag": "person"}]

Relationships:

[{"source": "p_4000", "target": "c_132", "properties": { "role": "Editorial assistant" }, "edge": "role_as"},
 {"source": "p_1039", "target": "c_132", "properties": { "share": "3.0" }, "edge": "hold_share"}]

We could construct it as:

def make_graph_response(resp) -> dict:
    nodes, relationships = list(), list()
    for row_index in range(resp.row_size()):
        path = resp.row_values(row_index)[0].as_path()
        _nodes = [
            {
                "id": node.get_id(), "tag": node.tags()[0],
                "name": node.properties(node.tags()[0]).get("name", "")
                }
                for node in path.nodes()
        ]
        nodes.extend(_nodes)
        _relationships = [
            {
                "source": rel.start_vertex_id(),
                "target": rel.end_vertex_id(),
                "properties": rel.properties(),
                "edge": rel.edge_name()
                }
                for rel in path.relationships()
        ]
        relationships.extend(_relationships)
    return {"nodes": nodes, "relationships": relationships}

The Flask App

Then Let's create a Flask App to consume the HTTP API request and return the data designed as above.

from flask import Flask, jsonify, request



app = Flask(__name__)


@app.route("/")
def root():
    return "Hey There?"


@app.route("/api", methods=["POST"])
def api():
    request_data = request.get_json()
    entity = request_data.get("entity", "")
    if entity:
        resp = query_shareholding(entity)
        data = make_graph_response(resp)
    else:
        data = dict() # tbd
    return jsonify(data)


def parse_nebula_graphd_endpoint():
    ng_endpoints_str = os.environ.get(
        'NG_ENDPOINTS', '127.0.0.1:9669,').split(",")
    ng_endpoints = []
    for endpoint in ng_endpoints_str:
        if endpoint:
            parts = endpoint.split(":")  # we dont consider IPv6 now
            ng_endpoints.append((parts[0], int(parts[1])))
    return ng_endpoints

def query_shareholding(entity):
    query_string = (
        f"USE shareholding; "
        f"MATCH p=(v)-[e:hold_share|:is_branch_of|:reletive_with|:role_as*1..3]-(v2) "
        f"WHERE id(v) IN ['{ entity }'] RETURN p LIMIT 100"
    )
    session = connection_pool.get_session('root', 'nebula')
    resp = session.execute(query_string)
    return resp

And by starting this Flask App instance:

export NG_ENDPOINTS="192.168.8.137:9669"
python3 app.py

 * Serving Flask app 'app' (lazy loading)
 * Environment: production
   WARNING: This is a development server. Do not use it in a production deployment.
   Use a production WSGI server instead.
 * Debug mode: off
[2021-10-13 18:30:17,574]: * Running on all addresses.
   WARNING: This is a development server. Do not use it in a production deployment.
[2021-10-13 18:30:17,574]: * Running on http://192.168.10.14:5000/ (Press CTRL+C to quit)

we could then query the API with cURL like this:

curl --header "Content-Type: application/json" \
     --request POST \
     --data '{"entity": "c_132"}' \
     http://192.168.10.14:5000/api | jq

{
  "nodes": [
    {
      "id": "c_132",
      "name": "\"Chambers LLC\"",
      "tag": "corp"
    },
    {
      "id": "c_245",
      "name": "\"Thompson-King\"",
      "tag": "corp"
    },
    {
      "id": "c_132",
      "name": "\"Chambers LLC\"",
      "tag": "corp"
    },
...
    }
  ],
  "relationships": [
    {
      "edge": "hold_share",
      "properties": "{'share': 0.0}",
      "source": "c_245",
      "target": "c_132"
    {
      "edge": "hold_share",
      "properties": "{'share': 9.0}",
      "source": "p_1767",
      "target": "c_132"
    },
    {
      "edge": "hold_share",
      "properties": "{'share': 11.0}",
      "source": "p_1997",
      "target": "c_132"
    },
...
    },
    {
      "edge": "reletive_with",
      "properties": "{'degree': 51}",
      "source": "p_7283",
      "target": "p_4723"
    }
  ]
}

Upstreams Projects

Owner
Wey Gu
Developer Advocate @vesoft-inc
Wey Gu
This repo will contain code to reproduce and build upon understanding transfer learning

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

4 Jun 16, 2021
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Most popular metrics used to evaluate object detection algorithms.

Most popular metrics used to evaluate object detection algorithms.

Rafael Padilla 4.4k Dec 25, 2022
PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models

PipeTransformer: Automated Elastic Pipelining for Distributed Training of Large-scale Models This repository is the official implementation of the fol

DistributedML 41 Dec 06, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees

Learning Efficient Online 3D Bin Packing on Packing Configuration Trees This repository is being continuously updated, please stay tuned! Any code con

86 Dec 28, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
A PyTorch Implementation of Gated Graph Sequence Neural Networks (GGNN)

A PyTorch Implementation of GGNN This is a PyTorch implementation of the Gated Graph Sequence Neural Networks (GGNN) as described in the paper Gated G

Ching-Yao Chuang 427 Dec 13, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023