Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

Overview

VAE with Volume-Preserving Flows

This is a PyTorch implementation of two volume-preserving flows as described in the following papers:

  • Tomczak, J. M., & Welling, M., Improving Variational Auto-Encoders using Householder Flow, arXiv preprint, 2016
  • Tomczak, J. M., & Welling, M., Improving Variational Auto-Encoders using convex combination linear Inverse Autoregressive Flow, arXiv preprint, 2017

Data

The experiments can be run on four datasets:

  • static MNIST: links to the datasets can found at link;
  • binary MNIST: the dataset is loaded from Keras;
  • OMNIGLOT: the dataset could be downloaded from link;
  • Caltech 101 Silhouettes: the dataset could be downloaded from link.

Run the experiment

  1. Set-up your experiment in experiment.py.
  2. Run experiment:
python experiment.py

Models

You can run a vanilla VAE, a VAE with the Householder Flow (HF) or the convex combination linear Inverse Autoregressive Flow (ccLinIAF) by setting model_name argument to either vae, vae_HF or vae_ccLinIAF, respectively. Setting number_combination for vae_ccLinIAF to 1 results in vae_linIAF.

Citation

Please cite our paper if you use this code in your research:

@article{TW:2017,
  title={{Improving Variational Auto-Encoders using convex combination linear Inverse Autoregressive Flow}},
  author={Tomczak, Jakub M and Welling, Max},
  journal={arXiv},
  year={2017}
}

Acknowledgments

The research conducted by Jakub M. Tomczak was funded by the European Commission within the Marie Skłodowska-Curie Individual Fellowship (Grant No. 702666, ”Deep learning and Bayesian inference for medical imaging”).

Owner
Jakub Tomczak
Assistant professor at Vrije Universities Amsterdam | Formerly MSC-IF in Max Welling's group at the UvA and DL Researcher at Qualcomm
Jakub Tomczak
Powerful unsupervised domain adaptation method for dense retrieval.

Powerful unsupervised domain adaptation method for dense retrieval

Ubiquitous Knowledge Processing Lab 191 Dec 28, 2022
This repository contains PyTorch models for SpecTr (Spectral Transformer).

SpecTr: Spectral Transformer for Hyperspectral Pathology Image Segmentation This repository contains PyTorch models for SpecTr (Spectral Transformer).

Boxiang Yun 45 Dec 13, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go

NeuroMorph: Unsupervised Shape Interpolation and Correspondence in One Go This repository provides our implementation of the CVPR 2021 paper NeuroMorp

Meta Research 35 Dec 08, 2022
Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Learning Opinion Summarizers by Selecting Informative Reviews This repository contains the codebase and the dataset for the corresponding EMNLP 2021

Arthur Bražinskas 39 Jan 01, 2023
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

NeuLab 40 Dec 23, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

基于 bert4keras 的一个baseline 不作任何 数据trick 单模 线上 最高可到 0.7891 # 基础 版 train.py 0.7769 # transformer 各层 cls concat 明神的trick https://xv44586.git

孙永松 7 Dec 28, 2021
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022