Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Related tags

Deep LearningFair-SSL
Overview

Fair-SSL

Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning?

Ethical bias in machine learning models has become a matter of concern in the software engineering community. Most of the prior software engineering works concentrated on finding ethical bias in models rather than fixing it. After finding bias, the next step is mitigation. Prior researchers mainly tried to use supervised approaches to achieve fairness. However, in the real world, getting data with trustworthy ground truth is challenging and also ground truth can contain human bias. Semi-supervised learning is a domain of machine learning where labeled and unlabeled data both are used to overcome the data labeling challenges. We, in this work, applied four popular semi-supervised techniques as pseudo-labelers to create fair classification models. Our framework, Fair-SSL, takes a very small amount (10%) of labeled data as input and generates pseudo-labels for the unlabeled data. We then synthetically generate new data points to balance the training data based on class and protected attribute as proposed by Chakraborty et al. in FSE 2021. Finally, classification model is trained on the balanced pseudo-labeled data and validated on test data. After experimenting on ten datasets and three learners, we found out that Fair-SSL achieves similar performance like three other state-of-the-art bias mitigation algorithms. Where prior algorithms require much training data, Fair-SSL requires only 10% of the labeled training data. As per our knowledge, this is the first SE work where semi-supervised techniques are used to fight against ethical bias in ML models.

Dataset Description -

1> Adult Income dataset - http://archive.ics.uci.edu/ml/datasets/Adult

2> COMPAS - https://github.com/propublica/compas-analysis

3> German Credit - https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29

4> Bank Marketing - https://archive.ics.uci.edu/ml/datasets/bank+marketing

5> Default Credit - https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

6> Heart - https://archive.ics.uci.edu/ml/datasets/Heart+Disease

7> MEPS - https://meps.ahrq.gov/mepsweb/

8> Student - https://archive.ics.uci.edu/ml/datasets/Student+Performance

9> Home Credit - https://www.kaggle.com/c/home-credit-default-risk

Data Preprocessing -

  • We have used data preprocessing as suggested by IBM AIF360
  • The rows containing missing values are ignored, continuous features are converted to categorical (e.g., age<25: young,age>=25: old), non-numerical features are converted to numerical(e.g., male: 1, female: 0). Fiinally, all the feature values are normalized(converted between 0 to 1).
  • For optimized Pre-processing, plaese visit Optimized Preprocessing
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
Code for Efficient Visual Pretraining with Contrastive Detection

Code for DetCon This repository contains code for the ICCV 2021 paper "Efficient Visual Pretraining with Contrastive Detection" by Olivier J. Hénaff,

DeepMind 56 Nov 13, 2022
The code for "Deep Level Set for Box-supervised Instance Segmentation in Aerial Images".

Deep Levelset for Box-supervised Instance Segmentation in Aerial Images Wentong Li, Yijie Chen, Wenyu Liu, Jianke Zhu* This code is based on MMdetecti

sunshine.lwt 112 Jan 05, 2023
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
SNE-RoadSeg in PyTorch, ECCV 2020

SNE-RoadSeg Introduction This is the official PyTorch implementation of SNE-RoadSeg: Incorporating Surface Normal Information into Semantic Segmentati

242 Dec 20, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
A crossplatform menu bar application using mpv as DLNA Media Renderer.

Macast Chinese README A menu bar application using mpv as DLNA Media Renderer. Install MacOS || Windows || Debian Download link: Macast release latest

4.4k Jan 01, 2023
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

Erdene-Ochir Tuguldur 22 Nov 30, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022