EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

Overview

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

This repo contains the official Pytorch implementaion code and configuration files of EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network. created by Hu Zhang.

Installation

Requirements

  • Python 3.6+
  • PyTorch 1.0+

Our environments

  • OS: Ubuntu 18.04
  • CUDA: 10.0
  • Toolkit: PyTorch 1.0
  • GPU: Titan RTX

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

Usage

First, clone the repository locally:

git clone https://github.com/murufeng/EPSANet.git
cd EPSANet
  • Create a conda virtual environment and activate it:
conda create -n epsanet python=3.6 
conda activate epsanet
conda install -c pytorch pytorch torchvision

Training

To train models on ImageNet with 8 gpus run:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python main.py -a epsanet50 --data /path/to/imagenet 

Model Zoo

Models are trained with 8 GPUs on both ImageNet and MS-COCO 2017 dataset.

Image Classification on ImageNet

Model Params(M) FLOPs(G) Top-1 (%) Top-5 (%)
EPSANet-50(Small) 22.56 3.62 77.49 93.54
EPSANet-50(Large) 27.90 4.72 78.64 94.18
EPSANet-101(Small) 38.90 6.82 78.43 94.11
EPSANet-101(Large) 49.59 8.97 79.38 94.58

Object Detection on MS-COCO 2017

Faster R-CNN

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 38.56 197.07 39.2 60.3 42.3
EPSANet-50(large) pytorch 1x 43.85 219.64 40.9 62.1 44.6

Mask R-CNN

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 41.20 248.53 40.0 60.9 43.3
EPSANet-50(large) pytorch 1x 46.50 271.10 41.4 62.3 45.3

RetinaNet

model Style Lr schd Params(M) FLOPs(G) box AP AP_50 AP_75
EPSANet-50(small) pytorch 1x 34.78 229.32 38.2 58.1 40.6
EPSANet-50(large) pytorch 1x 40.07 251.89 39.6 59.4 42.3

Instance segmentation with Mask R-CNN on MS-COCO 2017

model Params(M) FLOPs(G) AP AP_50 AP_75
EPSANet-50(small) 41.20 248.53 35.9 57.7 38.1
EPSANet-50(Large) 46.50 271.10 37.1 59.0 39.5

Citing EPSANet

You can cite the paper as:

@article{hu2021epsanet,
  title={EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network},
  author={Hu Zhang and Keke Zu and Jian Lu and Yuru Zou and Deyu Meng},
  journal={arXiv preprint arXiv:2105.14447},
  year={2021}
}
Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Implementations for the ICLR-2021 paper: SEED: Self-supervised Distillation For Visual Representation.

Jacob 27 Oct 23, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
Imaginaire - NVIDIA's Deep Imagination Team's PyTorch Library

Imaginaire Docs | License | Installation | Model Zoo Imaginaire is a pytorch library that contains optimized implementation of several image and video

NVIDIA Research Projects 3.6k Dec 29, 2022
FewBit — a library for memory efficient training of large neural networks

FewBit FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to back

24 Oct 22, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
REGTR: End-to-end Point Cloud Correspondences with Transformers

REGTR: End-to-end Point Cloud Correspondences with Transformers This repository contains the source code for REGTR. REGTR utilizes multiple transforme

Zi Jian Yew 108 Dec 17, 2022
Wordplay, an artificial Intelligence based crossword puzzle solver.

Wordplay, AI based crossword puzzle solver A crossword is a word puzzle that usually takes the form of a square or a rectangular grid of white- and bl

Vaibhaw 4 Nov 16, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
RuleBERT: Teaching Soft Rules to Pre-Trained Language Models

RuleBERT: Teaching Soft Rules to Pre-Trained Language Models (Paper) (Slides) (Video) RuleBERT is a pre-trained language model that has been fine-tune

16 Aug 24, 2022
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022