《Truly shift-invariant convolutional neural networks》(2021)

Overview

Truly shift-invariant convolutional neural networks [Paper]

Authors: Anadi Chaman and Ivan Dokmanić

Convolutional neural networks were always assumed to be shift invariant, until recently when it was shown that the classification accuracy of a trained CNN can take a serious hit with merely a 1-pixel shift in input image. One of the primary reasons for this problem is the use of downsampling (popularly known as stride) layers in the networks.

In this work, we present Adaptive Polyphase Sampling (APS), an easy-to-implement non-linear downsampling scheme that completely gets rid of this problem. The resulting CNNs yield 100% consistency in classification performance under shifts without any loss in accuracy. In fact, unlike prior works, the networks exhibit perfect consistency even before training, making it the first approach that makes CNNs truly shift invariant.

This repository contains our code in PyTorch to implement APS.

ImageNet training

To train ResNet-18 model with APS on ImageNet use the following commands (training and evaluation with circular shifts).

cd imagenet_exps
python3 main.py --out-dir OUT_DIR --arch resnet18_aps1 --seed 0 --data PATH-TO-DATASET

For training on multiple GPUs:

cd imagenet_exps
python3 main.py --out-dir OUT_DIR --arch resnet18_aps1 --seed 0 --data PATH-TO-DATASET --workers NUM_WORKERS --dist-url tcp://127.0.0.1:FREE-PORT --dist-backend nccl --multiprocessing-distributed --world-size 1 --rank 0

--arch is used to specify the architecture. To use ResNet18 with APS layer and blur filter of size j, pass 'resnet18_apsj' as the argument to --arch. List of currently supported network architectures are here.

--circular_data_aug can be used to additionally train the networks with random circular shifts.

Results are saved in OUT_DIR.

CIFAR-10 training

The following commands run our implementation on CIFAR-10 dataset.

cd cifar10_exps
python3 main.py --arch 'resnet18_aps' --filter_size FILTER_SIZE --validate_consistency --seed_num 0 --device_id 0 --model_folder CURRENT_MODEL_DIRECTORY --results_root_path ROOT_DIRECTORY --dataset_path PATH-TO-DATASET

--data_augmentation_flag can be used to additionally train the networks with randomly shifted images. FILTER_SIZE can take the values between 1 to 7. The list of CNN architectures currently supported can be found here.

The results are saved in the path: ROOT_DIRECTORY/CURRENT_MODEL_DIRECTORY/

Owner
Anadi Chaman
Anadi Chaman
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
Recurrent Variational Autoencoder that generates sequential data implemented with pytorch

Pytorch Recurrent Variational Autoencoder Model: This is the implementation of Samuel Bowman's Generating Sentences from a Continuous Space with Kim's

Daniil Gavrilov 347 Nov 14, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity

MinkLoc3D-SI: 3D LiDAR place recognition with sparse convolutions,spherical coordinates, and intensity Introduction The 3D LiDAR place recognition aim

16 Dec 08, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

[ICLR'21] DARTS-: Robustly Stepping out of Performance Collapse Without Indicators [openreview] Authors: Xiangxiang Chu, Xiaoxing Wang, Bo Zhang, Shun

55 Nov 01, 2022
This is a project based on ConvNets used to identify whether a road is clean or dirty. We have used MobileNet as our base architecture and the weights are based on imagenet.

PROJECT TITLE: CLEAN/DIRTY ROAD DETECTION USING TRANSFER LEARNING Description: This is a project based on ConvNets used to identify whether a road is

Faizal Karim 3 Nov 06, 2022
My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

My Body is a Cage: the Role of Morphology in Graph-Based Incompatible Control

yobi byte 29 Oct 09, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Open source hardware and software platform to build a small scale self driving car.

Donkeycar is minimalist and modular self driving library for Python. It is developed for hobbyists and students with a focus on allowing fast experimentation and easy community contributions.

Autorope 2.4k Jan 04, 2023
Predict halo masses from simulations via graph neural networks

HaloGraphNet Predict halo masses from simulations via Graph Neural Networks. Given a dark matter halo and its galaxies, creates a graph with informati

Pablo Villanueva Domingo 20 Nov 15, 2022
Scales, Chords, and Cadences: Practical Music Theory for MIR Researchers

ISMIR-musicTheoryTutorial This repository has slides and Jupyter notebooks for the ISMIR 2021 tutorial Scales, Chords, and Cadences: Practical Music T

Johanna Devaney 58 Oct 11, 2022
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023