FewBit — a library for memory efficient training of large neural networks

Overview

FewBit

FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to backward pass and memory footprint reduction for saved tensors between forward and backward passes. Namely, the library provides its own implementation of common activation functions and linear layer since they contribute the most to memory usage in training time. Optimized linear layer saves up to 15-20% memory and optimized activation functions save up to 15-30% of memory usage with negligible loss in performance (see [1][2] for details).

In the table below, one can see comparison of different optimizations applied to RoBERTa model. Compression rate of randomized linear layer is 20% (it uses only 20% of input) and GELU approximation uses only 3 bits.

Task Batch Size GELU Linear Layer Peak Memory, GiB Saving, %
1 MRPC 128 Vanilla Vanilla 11.30 0.0
2 MRPC 128 3-bit Vanilla 9.75 13.8
3 MRPC 128 Vanilla Randomized 9.20 18.6
4 MRPC 128 3-bit Randomized 7.60 32.7

Usage

The library fewbit implements basic activation functions with backward pass optimizations for reducing memory footprint during model training. All activation functions exported by the library can be used as a drop-in replacement for most of standard activation functions implemented in PyTorch. The common pattern is to replace torch.nn with fewbit package qualifier.

import fewbit
import torch as T

model = T.nn.Sequential(
    ...,
    fewbit.GELU(bits=3),  # Use 3-bits GELU approximation.
    ...,
)

In the case of pre-trained models, one can rebuild model with map_module routine which walks through model tree recursively and allows to replace some modules or activation functions. So, user should only use suitable constructor for a new module. As an example the code below replaces all default linear layers with randomized ones.

from fewbit import RandomizedLinear
from fewbit.util import convert_linear, map_module

converter = lambda x: convert_linear(x, RandomizedLinear, proj_dim_ratio=0.1)
new_model = map_module(old_model, converter)  # In-place model construction.

Quantized Gradients of Activation Functions

Installation

The simplest and preferred installation way is installation from PyPI.

pip install -U fewbit

FewBit is written in Python, but it implements some opertions in C++/CUDA to archive better performance. So, building from source requires CUDA Toolkit and CMake as a build system. The latest release can be installed with the following command.

pip install -U https://github.com/SkoltechAI/fewbit.git

List of Activation Functions

The library supports the following activation functions.

Piece-wise Activation Functions

In this section, all activation functions has 1-bit derivative. The only difference is band. The band requires two comparison to determine gradient domain. The complete list of activation functions is leaky_relu, relu, threshold, hardsigmoid, hardtanh, relu6, hardshrink, and softshrink.

Continous Activation Functions

All continous activation function could be divided into three classes according to its parity property: odd, even, and neither even nor odd. The parity property allows to use a small optimization to increase precision of approximation. The complete list of reimplemented activation functions in this category is celu, elu, hardswish, logsigmoid, mish, selu, sigmoid, silu, softplus, softsign, tanh, and tanhshrink.

List of Modules

Module RandomizedLinear is a replacement for default Linear module. It is used power of approximate matrix multiplication for memory saving.

Assembly

Preliminary step depends on one's PyTorch distribution and availiable tooling. Building of native components requires CMake and a build system like Make or Ninja. Next, if PyTorch is installed system-wide the the following step is not neccessary. Otherwise, one likely should add search path for CMake modules to environment variables as follows.

export CMAKE_PREFIX_PATH="$(python -c 'import torch.utils; print(torch.utils.cmake_prefix_path)')"

The next step is useful in development environment. It just builds PyTorch operator library in source tree (option --inplace) with forced CUDA support (option --cuda). By default no CUDA support are forced.

python setup.py build_ext --inplace --cuda

With options similar to the previous step, one can build wheel binary distribution of the package.

python setup.py bdist_wheel --inplace --cuda

Development Environment with Docker

In order to develop on different platforms we uses custom docker image for non-priviledge user based on Nvidia CUDA image. Image contains pre-built native extention and it is parametrized by user name and user ID in a host system. The latter is crucial thing in binding host volumes.

docker build -t fewbit --build-arg UID=$(id -u) .
docker run --rm -ti -e TERM=$TERM fewbit

Citation

Please cite the following papers if the library is used in an academic paper (export BibTeX).

@misc{bershatsky2022memoryefficient,
    title={{M}emory-{E}fficient {B}ackpropagation through {L}arge {L}inear {L}ayers},
    author={Daniel Bershatsky and Aleksandr Mikhalev and Alexandr Katrutsa and Julia Gusak and Daniil Merkulov and Ivan Oseledets},
    year={2022},
    eprint={2201.13195},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
}

@misc{novikov2022fewbit,
    title={{F}ew-{B}it {B}ackward: {Q}uantized {G}radients of {A}ctivation {F}unctions for {M}emory {F}ootprint {R}eduction},
    author={Georgii Novikov and Daniel Bershatsky and Julia Gusak and Alex Shonenkov and Denis Dimitrov and Ivan Oseledets},
    year={2022},
    eprint={2202.00441},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
}

License

© The FewBit authors, 2022 — now. Licensed under the BSD 3-Clause License. See AUTHORS and LICENSE file for more details1.

Footnotes

  1. The work was supported by Sber AI and the Analytical center under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021).

Functional TensorFlow Implementation of Singular Value Decomposition for paper Fast Graph Learning

tf-fsvd TensorFlow Implementation of Functional Singular Value Decomposition for paper Fast Graph Learning with Unique Optimal Solutions Cite If you f

Sami Abu-El-Haija 14 Nov 25, 2021
Towards End-to-end Video-based Eye Tracking

Towards End-to-end Video-based Eye Tracking The code accompanying our ECCV 2020 publication and dataset, EVE. Authors: Seonwook Park, Emre Aksan, Xuco

Seonwook Park 76 Dec 12, 2022
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
PyTorch implementation of Lip to Speech Synthesis with Visual Context Attentional GAN (NeurIPS2021)

Lip to Speech Synthesis with Visual Context Attentional GAN This repository contains the PyTorch implementation of the following paper: Lip to Speech

6 Nov 02, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Efficient neural networks for analog audio effect modeling

micro-TCN Efficient neural networks for audio effect modeling

Christian Steinmetz 94 Dec 29, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised and Tiny ML scenarios"

TinyWeaklyIsolationForest This repository stores the code to reproduce the results published in "TiWS-iForest: Isolation Forest in Weakly Supervised a

2 Mar 21, 2022
PyJokes - Joking around with Python library pyjokes

Hi, it's Muhaimin again 👋 This is something unorthodox but cool. Don't forget t

Muhaimin A. Salay Kanton 1 Feb 02, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Geneva is an artificial intelligence tool that defeats censorship by exploiting bugs in censors

Kevin Bock 1.5k Jan 06, 2023