Detectron2 for Document Layout Analysis

Overview


Detectron2 trained on PubLayNet dataset

This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Detectron2 implementation.
PubLayNet is a very large dataset for document layout analysis (document segmentation). It can be used to trained semantic segmentation/Object detection models.

NOTE

  • Models are trained on a portion of the dataset (train-0.zip, train-1.zip, train-2.zip, train-3.zip)
  • Trained on total 191,832 images
  • Models are evaluated on dev.zip (~11,000 images)
  • Backbone pretrained on COCO dataset is used but trained from scratch on PubLayNet dataset
  • Trained using Nvidia GTX 1080Ti 11GB
  • Trained on Windows 10

Steps to test pretrained models locally or jump to next section for docker deployment

from detectron2.data import MetadataCatalog
MetadataCatalog.get("dla_val").thing_classes = ['text', 'title', 'list', 'table', 'figure']
  • Then run below command for prediction on single image (change the config file relevant to the model)
python demo/demo.py --config-file configs/DLA_mask_rcnn_X_101_32x8d_FPN_3x.yaml --input "<path to image.jpg>" --output <path to save the predicted image> --confidence-threshold 0.5 --opts MODEL.WEIGHTS <path to model_final_trimmed.pth> MODEL.DEVICE cpu

Docker Deployment

  • For local docker deployment for testing use Docker DLA

Benchmarking

Architecture No. images AP AP50 AP75 AP Small AP Medium AP Large Model size full Model size trimmed
MaskRCNN Resnext101_32x8d FPN 3X 191,832 90.574 97.704 95.555 39.904 76.350 95.165 816M 410M
MaskRCNN Resnet101 FPN 3X 191,832 90.335 96.900 94.609 36.588 73.672 94.533 480M 240M
MaskRCNN Resnet50 FPN 3X 191,832 87.219 96.949 94.385 38.164 72.292 94.081 168M

Configuration used for training

Architecture Config file Training Script
MaskRCNN Resnext101_32x8d FPN 3X configs/DLA_mask_rcnn_X_101_32x8d_FPN_3x.yaml ./tools/train_net_dla.py
MaskRCNN Resnet101 FPN 3X configs/DLA_mask_rcnn_R_101_FPN_3x.yaml ./tools/train_net_dla.py
MaskRCNN Resnet50 FPN 3X configs/DLA_mask_rcnn_R_50_FPN_3x.yaml ./tools/train_net_dla.py

Some helper code and cli commands

Add the below code in demo/demo.py to get confidence along with label names

from detectron2.data import MetadataCatalog
MetadataCatalog.get("dla_val").thing_classes = ['text', 'title', 'list', 'table', 'figure']

Then run below command for prediction on single image

python demo/demo.py --config-file configs/DLA_mask_rcnn_X_101_32x8d_FPN_3x.yaml --input "<path to image.jpg>" --output <path to save the predicted image> --confidence-threshold 0.5 --opts MODEL.WEIGHTS <path to model_final_trimmed.pth> MODEL.DEVICE cpu

TODOs

  • Train MaskRCNN resnet50

Sample results from detectron2


Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up rewrite of the previous version, Detectron, and it originates from maskrcnn-benchmark.

What's New

  • It is powered by the PyTorch deep learning framework.
  • Includes more features such as panoptic segmentation, densepose, Cascade R-CNN, rotated bounding boxes, etc.
  • Can be used as a library to support different projects on top of it. We'll open source more research projects in this way.
  • It trains much faster.

See our blog post to see more demos and learn about detectron2.

Installation

See INSTALL.md.

Quick Start

See GETTING_STARTED.md, or the Colab Notebook.

Learn more at our documentation. And see projects/ for some projects that are built on top of detectron2.

Model Zoo and Baselines

We provide a large set of baseline results and trained models available for download in the Detectron2 Model Zoo.

License

Detectron2 is released under the Apache 2.0 license.

Citing Detectron

If you use Detectron2 in your research or wish to refer to the baseline results published in the Model Zoo, please use the following BibTeX entry.

@misc{wu2019detectron2,
  author =       {Yuxin Wu and Alexander Kirillov and Francisco Massa and
                  Wan-Yen Lo and Ross Girshick},
  title =        {Detectron2},
  howpublished = {\url{https://github.com/facebookresearch/detectron2}},
  year =         {2019}
}
Owner
Himanshu
:zap: Machine Learning Engineer
Himanshu
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

Rishikesh (ऋषिकेश) 55 Dec 26, 2022
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

HKBU High Performance Machine Learning Lab 6 Nov 18, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
Contrastive Learning Inverts the Data Generating Process

Official code to reproduce the results and data presented in the paper Contrastive Learning Inverts the Data Generating Process.

71 Nov 25, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
A curated list of awesome resources combining Transformers with Neural Architecture Search

A curated list of awesome resources combining Transformers with Neural Architecture Search

Yash Mehta 173 Jan 03, 2023