HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

Related tags

Deep LearningHNECV
Overview

HNECV

This repository provides a reference implementation of HNECV as described in the paper:

HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference.
Ming Yuan, LiuQun, Guoyin Wang, Yike Guo.
CAAI International Conference on Artificial Intelligence. 2021.

The paper has been accepted by CICAI, available at here.

Dataset

The processed data used in the paper are available at:

You need to perform the following steps for the downloaded file:

  • Move SingleDBLP.mat to the HNECV/dataset/DBLP/
  • Move SingleAminer.mat to the HNECV/dataset/AMiner/
  • Move SingleYelp.mat to the HNECV/dataset/Yelp/

Basic Usage

If you only want to train the model, you need to specify a certain data set, such as dblp, aminer, yelp

python pytorch_HNECV.py --dataset dblp

If you want to understand all the processes of the model, you can execute the following command

python pipline.py --dataset dblp

noted: You can adjust the hyperparameters in pytorch_HNECV.py or pipeline.py according to your needs

Requirements

  • Python ≥ 3.6
  • PyTorch ≥ 1.7.1
  • scipy ≥ 1.5.2
  • scikit-learn ≥ 0.21.3
  • tqdm ≥ 4.31.1
  • numpy
  • pandas
  • matplotlib

How to use your own data set

Your input file must be a adjacency matrix, which can be a mat file or other compressed format

If you only have the edgelist file, you need to follow the preprocessing method in pipline.py, and rewrite the corresponding semantic random walk code.

noted: If you run pytorch_HNECV.py directly, You need at least the label file of the node, like the initial file in the dataset/DBLP/reindex_dblp/ folder

Citing

If HNECV is useful for your research, please cite the following paper:

@inproceedings{yuan2021hnecv,
  title={HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference},
  author={Ming Yuan, Qun Liu, Guoyin Wang, Yike Guo},
  booktitle={CAAI International Conference on Artificial Intelligence},
  year={2021},
  address={Hangzhou}
}
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
Supervised Classification from Text (P)

MSc-Thesis Module: Masters Research Thesis Language: Python Grade: 75 Title: An investigation of supervised classification of therapeutic process from

Matthew Laws 1 Nov 22, 2021
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19 (Oral).

Pose-Transfer Code for the paper Progressive Pose Attention for Person Image Generation in CVPR19(Oral). The paper is available here. Video generation

Tengteng Huang 679 Jan 04, 2023
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022