Keras documentation, hosted live at keras.io

Related tags

Deep Learningkeras-io
Overview

Keras.io documentation generator

This repository hosts the code used to generate the keras.io website.

Generating a local copy of the website

pip install -r requirements.txt
cd scripts
python autogen.py make
python autogen.py serve

If you have Docker (you don't need the gpu version of Docker), you can run instead:

docker build -t keras-io . && docker run --rm -p 8000:8000 keras-io

It will take a while the first time because it's going to pull the image and the dependencies, but on the next times it'll be much faster.

Another way of testing using Docker is via our Makefile:

make container-test

This command will build a Docker image with a documentation server and run it.

Call for examples

Are you interested in submitting new examples for publication on keras.io? We welcome your contributions! Please read the information below about adding new code examples.

We are currently interested in the following examples.

Adding a new code example

Keras code examples are implemented as tutobooks.

A tutobook is a script available simultaneously as a notebook, as a Python file, and as a nicely-rendered webpage.

Its source-of-truth (for manual edition and version control) is its Python script form, but you can also create one by starting from a notebook and converting it with the command nb2py.

Text cells are stored in markdown-formatted comment blocks. the first line (starting with """) may optionally contain a special annotation, one of:

  • shell: execute this block while prefixing each line with !.
  • invisible: do not render this block.

The script form should start with a header with the following fields:

Title: (title)
Author: (could be `Authors`: as well, and may contain markdown links)
Date created: (date in yyyy/mm/dd format)
Last modified: (date in yyyy/mm/dd format)
Description: (one-line text description)

To see examples of tutobooks, you can check out any .py file in examples/ or guides/.

Creating a new example starting from a ipynb file

  1. Save the ipynb file to local disk.
  2. Convert the file to a tutobook by running: (assuming you are in the scripts/ directory)
python tutobooks.py nb2py path_to_your_nb.ipynb ../examples/vision/script_name.py

This will create the file examples/vision/script_name.py.

  1. Open it, fill in the headers, and generally edit it so that it looks nice.

NOTE THAT THE CONVERSION SCRIPT MAY MAKE MISTAKES IN ITS ATTEMPTS TO SHORTEN LINES. MAKE SURE TO PROOFREAD THE GENERATED .py IN FULL. Or alternatively, make sure to keep your lines reasonably-sized (<90 char) to start with, so that the script won't have to shorten them.

  1. Run python autogen.py add_example vision/script_name. This will generate an ipynb and markdown rendering of your example, creating files in examples/vision/ipynb, examples/vision/md, and examples/vision/img. Do not modify any of these files by hand; only the original Python script should ever be edited manually.
  2. Submit a PR adding examples/vision/script_name.py (only the .py, not the generated files). Get a review and approval.
  3. Once the PR is approved, add to the PR the files created by the add_example command. Then we will merge the PR.

Creating a new example starting from a Python script

  1. Format the script with black: black script_name.py
  2. Add tutobook header
  3. Put the script in the relevant subfolder of examples/ (e.g. examples/vision/script_name)
  4. Run python autogen.py add_example vision/script_name. This will generate an ipynb and markdown rendering of your example, creating files in examples/vision/ipynb, examples/vision/md, and examples/vision/img. Do not modify any of these files by hand; only the original Python script should ever be edited manually.
  5. Submit a PR adding examples/vision/script_name.py (only the .py, not the generated files). Get a review and approval.
  6. Once the PR is approved, add to the PR the files created by the add_example command. Then we will merge the PR.

Previewing a new example

You can locally preview what the example looks like by running:

cd scripts
python autogen.py add_example vision/script_name

(Assuming the tutobook file is examples/vision/script_name.py.)

NOTE THAT THIS COMMAND WILL ERROR OUT IF ANY CELLS TAKES TOO LONG TO EXECUTE. In that case, make your code lighter/faster. Remember that examples are meant to demonstrate workflows, not train state-of-the-art models. They should stay very lightweight.

Then serving the website:

python autogen.py make
python autogen.py serve

And navigating to 0.0.0.0:8000/examples.

Read-only autogenerated files

The contents of the following folders should not be modified by hand:

  • site/*
  • sources/*
  • templates/examples/*
  • templates/guides/*
  • examples/*/md/*, examples/*/ipynb/*, examples/*/img/*
  • guides/md/*, guides/ipynb/*, guides/img/*

Modifiable files

These are the only files that should be edited by hand:

  • templates/*.md, with the exception of templates/examples/* and templates/guides/*
  • examples/*/*.py
  • guides/*.py
  • theme/*
  • scripts/*.py
Owner
Keras
Deep Learning for humans
Keras
The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color

The World of an Octopus: How Reporting Bias Influences a Language Model's Perception of Color Overview Code and dataset for The World of an Octopus: H

1 Nov 13, 2021
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
A new data augmentation method for extreme lighting conditions.

Random Shadows and Highlights This repo has the source code for the paper: Random Shadows and Highlights: A new data augmentation method for extreme l

Osama Mazhar 35 Nov 26, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge" Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahu

Abhin Shah 1 Jun 03, 2022
Implement Decoupled Neural Interfaces using Synthetic Gradients in Pytorch

disclaimer: this code is modified from pytorch-tutorial Image classification with synthetic gradient in Pytorch I implement the Decoupled Neural Inter

Andrew 114 Dec 22, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Official code for "Stereo Waterdrop Removal with Row-wise Dilated Attention (IROS2021)"

Stereo-Waterdrop-Removal-with-Row-wise-Dilated-Attention This repository includes official codes for "Stereo Waterdrop Removal with Row-wise Dilated A

29 Oct 01, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
Code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning".

0. Introduction This repository contains the source code for our SIGCOMM'21 paper "Network Planning with Deep Reinforcement Learning". Notes The netwo

NetX Group 68 Nov 24, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
An implementation of MobileFormer

MobileFormer An implementation of MobileFormer proposed by Yinpeng Chen, Xiyang Dai et al. Including [1] Mobile-Former proposed in:

slwang9353 62 Dec 28, 2022