Keras documentation, hosted live at keras.io

Related tags

Deep Learningkeras-io
Overview

Keras.io documentation generator

This repository hosts the code used to generate the keras.io website.

Generating a local copy of the website

pip install -r requirements.txt
cd scripts
python autogen.py make
python autogen.py serve

If you have Docker (you don't need the gpu version of Docker), you can run instead:

docker build -t keras-io . && docker run --rm -p 8000:8000 keras-io

It will take a while the first time because it's going to pull the image and the dependencies, but on the next times it'll be much faster.

Another way of testing using Docker is via our Makefile:

make container-test

This command will build a Docker image with a documentation server and run it.

Call for examples

Are you interested in submitting new examples for publication on keras.io? We welcome your contributions! Please read the information below about adding new code examples.

We are currently interested in the following examples.

Adding a new code example

Keras code examples are implemented as tutobooks.

A tutobook is a script available simultaneously as a notebook, as a Python file, and as a nicely-rendered webpage.

Its source-of-truth (for manual edition and version control) is its Python script form, but you can also create one by starting from a notebook and converting it with the command nb2py.

Text cells are stored in markdown-formatted comment blocks. the first line (starting with """) may optionally contain a special annotation, one of:

  • shell: execute this block while prefixing each line with !.
  • invisible: do not render this block.

The script form should start with a header with the following fields:

Title: (title)
Author: (could be `Authors`: as well, and may contain markdown links)
Date created: (date in yyyy/mm/dd format)
Last modified: (date in yyyy/mm/dd format)
Description: (one-line text description)

To see examples of tutobooks, you can check out any .py file in examples/ or guides/.

Creating a new example starting from a ipynb file

  1. Save the ipynb file to local disk.
  2. Convert the file to a tutobook by running: (assuming you are in the scripts/ directory)
python tutobooks.py nb2py path_to_your_nb.ipynb ../examples/vision/script_name.py

This will create the file examples/vision/script_name.py.

  1. Open it, fill in the headers, and generally edit it so that it looks nice.

NOTE THAT THE CONVERSION SCRIPT MAY MAKE MISTAKES IN ITS ATTEMPTS TO SHORTEN LINES. MAKE SURE TO PROOFREAD THE GENERATED .py IN FULL. Or alternatively, make sure to keep your lines reasonably-sized (<90 char) to start with, so that the script won't have to shorten them.

  1. Run python autogen.py add_example vision/script_name. This will generate an ipynb and markdown rendering of your example, creating files in examples/vision/ipynb, examples/vision/md, and examples/vision/img. Do not modify any of these files by hand; only the original Python script should ever be edited manually.
  2. Submit a PR adding examples/vision/script_name.py (only the .py, not the generated files). Get a review and approval.
  3. Once the PR is approved, add to the PR the files created by the add_example command. Then we will merge the PR.

Creating a new example starting from a Python script

  1. Format the script with black: black script_name.py
  2. Add tutobook header
  3. Put the script in the relevant subfolder of examples/ (e.g. examples/vision/script_name)
  4. Run python autogen.py add_example vision/script_name. This will generate an ipynb and markdown rendering of your example, creating files in examples/vision/ipynb, examples/vision/md, and examples/vision/img. Do not modify any of these files by hand; only the original Python script should ever be edited manually.
  5. Submit a PR adding examples/vision/script_name.py (only the .py, not the generated files). Get a review and approval.
  6. Once the PR is approved, add to the PR the files created by the add_example command. Then we will merge the PR.

Previewing a new example

You can locally preview what the example looks like by running:

cd scripts
python autogen.py add_example vision/script_name

(Assuming the tutobook file is examples/vision/script_name.py.)

NOTE THAT THIS COMMAND WILL ERROR OUT IF ANY CELLS TAKES TOO LONG TO EXECUTE. In that case, make your code lighter/faster. Remember that examples are meant to demonstrate workflows, not train state-of-the-art models. They should stay very lightweight.

Then serving the website:

python autogen.py make
python autogen.py serve

And navigating to 0.0.0.0:8000/examples.

Read-only autogenerated files

The contents of the following folders should not be modified by hand:

  • site/*
  • sources/*
  • templates/examples/*
  • templates/guides/*
  • examples/*/md/*, examples/*/ipynb/*, examples/*/img/*
  • guides/md/*, guides/ipynb/*, guides/img/*

Modifiable files

These are the only files that should be edited by hand:

  • templates/*.md, with the exception of templates/examples/* and templates/guides/*
  • examples/*/*.py
  • guides/*.py
  • theme/*
  • scripts/*.py
Owner
Keras
Deep Learning for humans
Keras
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
[WACV21] Code for our paper: Samuel, Atzmon and Chechik, "From Generalized zero-shot learning to long-tail with class descriptors"

DRAGON: From Generalized zero-shot learning to long-tail with class descriptors Paper Project Website Video Overview DRAGON learns to correct the bias

Dvir Samuel 25 Dec 06, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022