source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Overview

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge"

Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahuja, "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge," The 25th International Conference on Artificial Intelligence and Statistics (AISTATS), 2022

Contact: [email protected]

Arxiv: https://arxiv.org/pdf/2106.11560.pdf

Dependencies:

In order to successfully execute the code, the following libraries must be installed:

  1. Python --- causallib, sklearn, multiprocessing, contextlib, scipy, functools, pandas, numpy, itertools, random, argparse, time, matplotlib, pickle, pyreadr, rpy2, torch

  2. R --- RCIT

Command inputs:

  • nr: number of repetitions (default = 100)
  • no: number of observations (default = 50000)
  • use_t_in_e: indicator for whether t should be used to generate e (default = 1)
  • ne: number of environments (default = 3)
  • number_IRM_iterations - number of iterations of IRM (default = 15000)
  • nrd - number of features for sparse subset search (default = 5)

Reproducing the figures and tables:

  1. To reproduce Figure 3a and Figure 10a, run the following three commands:
$ mkdir synthetic_theory
$ python3 -W ignore synthetic_theory.py --nr 100
$ python3 plot_synthetic_theory.py --nr 100
  1. To reproduce Figure 3b and Figure 10b, run the following three commands:
$ mkdir synthetic_algorithms
$ python3 -W ignore synthetic_algorithms.py --nr 100
$ python3 plot_synthetic_algorithms.py --nr 100
  1. To reproduce Figure 3c, run the following three commands:
$ mkdir synthetic_high_dimension
$ python3 -W ignore synthetic_high_dimension.py --nr 100
$ python3 plot_synthetic_high_dimension.py --nr 100
  1. To reproduce Table 1, run the following two commands:
$ mkdir syn-entner 
$ python3 -W ignore syn-entner --nr 100
  1. To reproduce Table 2, run the following two commands:
$ mkdir syn-cheng 
$ python3 -W ignore syn-cheng --nr 100
  1. To reproduce Figure 4, Figure 12a and Figure 12b, run the following three commands:
$ mkdir ihdp
$ python3 -W ignore ihdp.py --nr 100
$ python3 plot_ihdp.py --nr 100
  1. To reproduce Figure 5, run the following three commands:
$ mkdir cattaneo
$ python3 -W ignore cattaneo.py --nr 100
$ python3 plot_cattaneo.py --nr 100
  1. To reproduce Figure 11a and Figure 11c, run the following three commands:
$ mkdir synthetic_theory
$ python3 -W ignore synthetic_theory.py --nr 100 --use_t_in_e 0
$ python3 plot_synthetic_theory.py --nr 100 --use_t_in_e 0
  1. To reproduce Figure 11b and Figure 11d, run the following three commands:
$ mkdir synthetic_algorithms
$ python3 -W ignore synthetic_algorithms.py --nr 100 --use_t_in_e 0
$ python3 plot_ synthetic_algorithms.py --nr 100 --use_t_in_e 0
Owner
Abhin Shah
Graduate student at MIT. Former undergrad at IITBombay. Former intern at IBM and EPFL
Abhin Shah
Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

COCON_ICLR2021 This is our Pytorch implementation of COCON. CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021) Alvin Chan, Y

alvinchangw 79 Dec 18, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Invertible conditional GANs for image editing

Invertible Conditional GANs This is the implementation of the IcGAN model proposed in our paper: Invertible Conditional GANs for image editing. Novemb

Guim 278 Dec 12, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model This repository is the official PyTorch implementation of GraphRNN, a graph gene

Jiaxuan 568 Dec 29, 2022
a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LSTM layers

RNN-Playwrite a reccurrent neural netowrk that when trained on a peice of text and fed a starting prompt will write its on 250 character text using LS

Arno Barton 1 Oct 29, 2021
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Behind the Curtain: Learning Occluded Shapes for 3D Object Detection

Behind the Curtain: Learning Occluded Shapes for 3D Object Detection Acknowledgement We implement our model, BtcDet, based on [OpenPcdet 0.3.0]. Insta

Qiangeng Xu 163 Dec 19, 2022