source code for 'Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge' by A. Shah, K. Shanmugam, K. Ahuja

Overview

Source code for "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge"

Reference: Abhin Shah, Karthikeyan Shanmugam, Kartik Ahuja, "Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge," The 25th International Conference on Artificial Intelligence and Statistics (AISTATS), 2022

Contact: [email protected]

Arxiv: https://arxiv.org/pdf/2106.11560.pdf

Dependencies:

In order to successfully execute the code, the following libraries must be installed:

  1. Python --- causallib, sklearn, multiprocessing, contextlib, scipy, functools, pandas, numpy, itertools, random, argparse, time, matplotlib, pickle, pyreadr, rpy2, torch

  2. R --- RCIT

Command inputs:

  • nr: number of repetitions (default = 100)
  • no: number of observations (default = 50000)
  • use_t_in_e: indicator for whether t should be used to generate e (default = 1)
  • ne: number of environments (default = 3)
  • number_IRM_iterations - number of iterations of IRM (default = 15000)
  • nrd - number of features for sparse subset search (default = 5)

Reproducing the figures and tables:

  1. To reproduce Figure 3a and Figure 10a, run the following three commands:
$ mkdir synthetic_theory
$ python3 -W ignore synthetic_theory.py --nr 100
$ python3 plot_synthetic_theory.py --nr 100
  1. To reproduce Figure 3b and Figure 10b, run the following three commands:
$ mkdir synthetic_algorithms
$ python3 -W ignore synthetic_algorithms.py --nr 100
$ python3 plot_synthetic_algorithms.py --nr 100
  1. To reproduce Figure 3c, run the following three commands:
$ mkdir synthetic_high_dimension
$ python3 -W ignore synthetic_high_dimension.py --nr 100
$ python3 plot_synthetic_high_dimension.py --nr 100
  1. To reproduce Table 1, run the following two commands:
$ mkdir syn-entner 
$ python3 -W ignore syn-entner --nr 100
  1. To reproduce Table 2, run the following two commands:
$ mkdir syn-cheng 
$ python3 -W ignore syn-cheng --nr 100
  1. To reproduce Figure 4, Figure 12a and Figure 12b, run the following three commands:
$ mkdir ihdp
$ python3 -W ignore ihdp.py --nr 100
$ python3 plot_ihdp.py --nr 100
  1. To reproduce Figure 5, run the following three commands:
$ mkdir cattaneo
$ python3 -W ignore cattaneo.py --nr 100
$ python3 plot_cattaneo.py --nr 100
  1. To reproduce Figure 11a and Figure 11c, run the following three commands:
$ mkdir synthetic_theory
$ python3 -W ignore synthetic_theory.py --nr 100 --use_t_in_e 0
$ python3 plot_synthetic_theory.py --nr 100 --use_t_in_e 0
  1. To reproduce Figure 11b and Figure 11d, run the following three commands:
$ mkdir synthetic_algorithms
$ python3 -W ignore synthetic_algorithms.py --nr 100 --use_t_in_e 0
$ python3 plot_ synthetic_algorithms.py --nr 100 --use_t_in_e 0
Owner
Abhin Shah
Graduate student at MIT. Former undergrad at IITBombay. Former intern at IBM and EPFL
Abhin Shah
KAPAO is an efficient multi-person human pose estimation model that detects keypoints and poses as objects and fuses the detections to predict human poses.

KAPAO (Keypoints and Poses as Objects) KAPAO is an efficient single-stage multi-person human pose estimation model that models keypoints and poses as

Will McNally 664 Dec 30, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
A baseline code for VSPW

A baseline code for VSPW Preparation Download VSPW dataset The VSPW dataset with extracted frames and masks is available here.

28 Aug 22, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022