Anonymize BLM Protest Images

Overview

Anonymize BLM Protest Images

This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Use our interface at blm.stanford.edu.

What's happened? Arrests at protests from public images

Over the past weeks, we have seen an increasing number of arrests at BLM protests, with images circulating around the web enabling automatic identification of those individuals and subsequent arrests to hamper protest activity. This primarily concerns social media protest images.

Numerous applications have emerged in response to this threat that aim to anonymize protest images and enable people to continue protesting in safety. Of course, this would require a shift on the public's part to recognize this issue and an easy and effective method for anonymization to surface. In an ideal world, platforms like Twitter would enable an on-platform solution.

So what's your goal? AI to help alleviate some of the worst parts of AI

The goal of this work is to leverage our group's knowledge of facial recognition AI to offer the most effective anonymization tool that evades the state of the art in facial recognition technology. AI facial recognition models can still recognize blurred faces. This work tries to discourage people from trying to recognize or reconstruct pixelated faces by masking people with an opaque mask. We use the BLM fist emoji as that mask for solidarity. While posting anonymized images does not delete the originals, we are starting with awareness and hope Twitter and other platforms would offer an on-platform solution (might be a tall order, but one can hope).

Importantly, this application does not save images. We hope the transparency of this repository will allow for community input. The Twitter bot posts anonymized images based on the Fair Use policy; however, if your image is used and you'd like it to be taken down, we will do our best to do so immediately.

Q&A

How can AI models still recognize blurred faces, even if they cannot reconstruct them perfectly? Recognition is different from reconstruction. Facial recognition technology can still identify many blurred faces and is better than humans at it. Reconstruction is a much more arduous task (see the difference between discriminative and generative models, if you're curious). Reconstruction has recently been exposed to be very biased (see lessons from PULSE). Blurring faces has the added threat of encouraging certain people or groups to de-anonymize images through reconstruction or directly identifying individuals through recognition.

Do you save my pre-anonymized images? No. The goal of this tool is to protect your privacy and saving the images would be antithetical to that. We don’t save any images you give us or any of the anonymized images created from the AI model (sometimes they’re not perfect, so saving them would still not be great!). If you like technical details: the image is passed into the AI model on the cloud, then the output is passed back and directly displayed in a base64 jpg on your screen.

The bot tweeted my image with the fists on it. Can you take it down? Yes, absolutely. Please DM the bot or reply directly.

Can you talk a bit more about your AI technical approach? We build on state-of-the-art crowd counting AI, because it offers huge advantages to anonymizing crowds over traditional facial recognition models. Traditional methods can only find a few (less than 20 or even less than 5) in a single image. Crowds of BLM protesters can number in the hundreds and thousands, and certainly around 50, in a single image. The model we use in this work has been trained on over 1.2 million people in the open-sourced research dataset, called QNRF, with crowds ranging from the few to the the thousands. False negatives are the worst error in our case. The pretrained model weights live in the LSC-CNN that we build on - precisely, it's in a Google Drive folder linked from their README.

Other amazing tools

We would love to showcase other parallel efforts (please propose any we have missed here!). Not only that, if this is not the tool for you, please check these tools out too:

And more...

Built by and built on

  1. This work is built by the Stanford Machine Learning Group. We are Krishna Patel, JQ, and Sharon Zhou.

  2. Flask-Postgres Template by @sharonzhou

https://github.com/sharonzhou/flask-postgres-template
  1. Image Uploader by @christianbayer
https://github.com/christianbayer/image-uploader
  1. LSC-CNN by @vlad3996
https://github.com/vlad3996/lsc-cnn

Paper associated with this work:

@article{LSCCNN20,
    Author = {Sam, Deepak Babu and Peri, Skand Vishwanath and Narayanan Sundararaman, Mukuntha,  and Kamath, Amogh and Babu, R. Venkatesh},
    Title = {Locate, Size and Count: Accurately Resolving People in Dense Crowds via Detection},
    Journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
    Year = {2020}
}

Offline mode

See the offline branch to run this work offline using Docker. This awesome code was contributed by @matthiaszimmermann.

Owner
Stanford Machine Learning Group
Our mission is to significantly improve people's lives through our work in AI
Stanford Machine Learning Group
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022
Transparent Transformer Segmentation

Transparent Transformer Segmentation Introduction This repository contains the data and code for IJCAI 2021 paper Segmenting transparent object in the

谢恩泽 140 Jan 02, 2023
MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding Website • Colab • Paper This repository contains code and links to pre-trained mod

Aishwarya Kamath 770 Dec 28, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022