Official implementation of ETH-XGaze dataset baseline

Overview

ETH-XGaze baseline

Official implementation of ETH-XGaze dataset baseline.

ETH-XGaze dataset

ETH-XGaze dataset is a gaze estimation dataset consisting of over one million high-resolution images of varying gaze under extreme head poses. We established a simple baseline test on our ETH-XGaze dataset and other datasets. This repository includes the code and pre-trained model. Please find more details about the dataset on our project page.

License

The code is under the license of CC BY-NC-SA 4.0 license

Requirement

  • Python 3.5
  • Pytorch 1.1.0, torchvision
  • opencv-python

For model training

  • h5py to load the training data
  • configparser

For testing

  • dlib for face and facial landmark detection.

Training

  • You need to download the ETH-XGaze dataset for training. After downloading the data, make sure it is the version of pre-processed 224*224 pixels face patch. Put the data under '\data\xgaze'
  • Run the python main.py to train the model
  • The model will be saved under 'ckpt' folder.

Test

The demo.py files show how to perform the gaze estimation from input image. The example image is already in 'example/input' folder.

  • First, you need to download the pre-trained model, and put it under "ckpt" folder.
  • And then, run the 'python demo.py' for test.

Data normalization

The 'normalization_example.py' gives the example of data normalization from the raw dataset to the normalized data.

Citation

If using this code-base and/or the ETH-XGaze dataset in your research, please cite the following publication:

@inproceedings{Zhang2020ETHXGaze,
  author    = {Xucong Zhang and Seonwook Park and Thabo Beeler and Derek Bradley and Siyu Tang and Otmar Hilliges},
  title     = {ETH-XGaze: A Large Scale Dataset for Gaze Estimation under Extreme Head Pose and Gaze Variation},
  year      = {2020},
  booktitle = {European Conference on Computer Vision (ECCV)}
}

FAQ

Q: Where are the test set labels?
You can submit your test result to our leaderboard and get the results. Please do follow the registration first, otherwiese, your request will be ignored. Link to the leaderboard.

Q: What is the data normalization?
As we wrote in our paper, data normalization is a method to crop the face/eye image without head rotation around the roll axis. Please refer to the following paper for details: Revisiting Data Normalization for Appearance-Based Gaze Estimation

Q: Why convert 3D gaze direction (vector) to 2D gaze direction (pitch and yaw)? How to convert between 3D and 2D gaze directions?
Essentially to say, 2D pitch and yaw is enough to describe the gaze direction in the head coordinate system, and using 2D instead of 3D could make the model training easier. There are code examples on how to convert between them in the "utils.py" file as pitchyaw_to_vector and vector_to_pitchyaw.

Owner
Xucong Zhang
Postdoc at ETH Zurich
Xucong Zhang
Implementation of ProteinBERT in Pytorch

ProteinBERT - Pytorch (wip) Implementation of ProteinBERT in Pytorch. Original Repository Install $ pip install protein-bert-pytorch Usage import torc

Phil Wang 92 Dec 25, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Geoff Pleiss 1.4k Dec 25, 2022
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
Code implementation of "Sparsity Probe: Analysis tool for Deep Learning Models"

Sparsity Probe: Analysis tool for Deep Learning Models This repository is a limited implementation of Sparsity Probe: Analysis tool for Deep Learning

3 Jun 09, 2021
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks

Assessing the Influence of Models on the Performance of Reinforcement Learning Algorithms applied on Continuous Control Tasks This is the master thesi

Giacomo Arcieri 1 Mar 21, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
Unofficial PyTorch implementation of SimCLR by Google Brain

Unofficial PyTorch implementation of SimCLR by Google Brain

Rishabh Anand 2 Oct 13, 2021
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022