This tutorial repository is to introduce the functionality of KGTK to first-time users

Overview

Welcome to the KGTK notebook tutorial

The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledge Graph Toolkit (KGTK) is a comprehensive framework for the creation and exploitation of large hyper-relational knowledge graphs (KGs), designed for ease of use, scalability, and speed. The tutorial consists of several notebooks that demonstrate how to perform network analysis, graph profiling, knowledge enrichment, and embedding computation over a portion of the Wikidata knowledge graph. The tutorial notebooks can be found in the tutorial folder. All notebooks require minimum configuration and can be run locally or in Google Colab in a matter of a few minutes. The input data for the notebooks is stored in the datasets folder. Basic understanding of knowledge graphs is sufficient for this tutorial.

This repository has been created for the purpose of the KGTK tutorial presented at ISWC 2021. For more information on this tutorial, see our website.

Notebooks

  1. 01-kgtk-introduction.ipynb introduction to kgtk and kypher.
  2. 02-kg-profiling.ipynb performs profiling of a Wikidata subgraph, by computing deep statistics of its classes, instances, and properties.
  3. 03-kg-graph-embeddings.ipynb computes graph embeddings of a Wikidata subgraph using kgtk, demonstrates how to use these embeddings for similarity estimation, and visualizes them.
  4. 04-kg-enrichment-with-csv.ipynb shows how structured data from IMDb can be integrated into a subset of Wikidata.
  5. 05-kg-enrichment-with-lod.ipynb shows how LOD graphs like Getty Vocabulary can be used to enrich Wikidata by using kgtk operations.
  6. 06-kg-network-analysis.ipynb analyzes the family network of Arnold Schwarzenegger (Q2685) in Wikidata by using KGTK operations.
  7. 07-kg-constraint-validation.ipynb demonstrates how to do constraint validation on one wikidata property.

Running the notebooks in Google Colab

List of steps required to be able to run the ISI Google colab Notebooks.

Make a copy of the notebooks to your Google Drive.

The following tutorial notebooks are available to run in Google Colab

  1. 01-kgtk-introduction.ipynb
  2. 02-kg-profiling.ipynb
  3. 03-kg-graph-embeddings.ipynb
  4. 04-kg-enrichment-with-csv.ipynb
  5. 05-kg-enrichment-with-lod.ipynb
  6. 06-kg-network-analysis.ipynb
  7. 07-kg-constraint-validation.ipynb
  8. kgtk-browser.ipynb (experimental)

Click on a link, it'll take you to the Google Colab notebook. These are readonly notebook links.

Click on Save a copy in Drive from the File menu as shown.

Save a Copy

This will create a copy of the notebook in your Google Drive.

Install kgtk

Run the first cell to install kgtk.

If you see this warning,

Author

click on Run anyway to continue

You'll see an error after the install finishes,

Restart Runtime

This is because of a conflict in Google Colab's python environment. You have to click on the Restart Runtime button.

You do not have to install kgtk again.

In some notebooks, there are a few more installation cells, in case you see the same error as above, please click on Restart Runtime

Run the cells in the notebook

Now, simply run all the cells. The notebook should run successfully.

Google Colab Caveats

  • The colab VM and python environment is ephemeral. The VM will reset after a while, all the installed libraries and files produced will be lost.
  • Google Colab File IO. Download / Upload files to Google Colab
  • You can connect a google drive to the colab notebook to read from and save to.
  • Users can run the same colab notebook by sharing it with a link. This can have unwanted complications in case multiple people run the same cell at the same time.

Contact

Owner
USC ISI I2
USC ISI I2
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Changing the Mind of Transformers for Topically-Controllable Language Generation

We will first introduce the how to run the IPython notebook demo by downloading our pretrained models. Then, we will introduce how to run our training and evaluation code.

IESL 20 Dec 06, 2022
Pretrained Cost Model for Distributed Constraint Optimization Problems

Pretrained Cost Model for Distributed Constraint Optimization Problems Requirements PyTorch 1.9.0 PyTorch Geometric 1.7.1 Directory structure baseline

2 Aug 28, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
subpixel: A subpixel convnet for super resolution with Tensorflow

subpixel: A subpixel convolutional neural network implementation with Tensorflow Left: input images / Right: output images with 4x super-resolution af

Atrium LTS 2.1k Dec 23, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
A PyTorch Implementation of "Neural Arithmetic Logic Units"

Neural Arithmetic Logic Units [WIP] This is a PyTorch implementation of Neural Arithmetic Logic Units by Andrew Trask, Felix Hill, Scott Reed, Jack Ra

Kevin Zakka 181 Nov 18, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence

Speech Recognition is an important feature in several applications used such as home automation, artificial intelligence, etc. This article aims to provide an introduction on how to make use of the S

RISHABH MISHRA 1 Feb 13, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022