Style-based Neural Drum Synthesis with GAN inversion

Overview

Style-based Drum Synthesis with GAN Inversion Demo

TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the paper Adversarial Synthesis of Drum Sounds @ The 2020 DAFx Conference.

neural drum synthesis

Code

Dependencies

Python

Code has been developed with Python 3.6.13. It should work with other versions of Python 3, but has not been tested. Moreover, we rely on several third-party libraries, listed in requirements.txt. They can be installed with

$ pip install -r requirements.txt

Checkpoints

The tensorflow checkpoints for loading pre-trained network weights can be download here. Unzip the folder and save it into this projects directory: "style-drumsynth/checkpoints".

Usage

The code is contained within the ads_demo.py script, which enables conditional synthesises of drum sounds using a pretrained generator.

The following control parameters are available:

  • Condition: which type of drum to generation (kick, snare or hat)
  • Direction: "features", which principal direction to move in
  • Direction slider: How far to move in a particular direction
  • Number of generations: How many drums to generate
  • Stocastic Variation: Amount of inconsequential noise to inject into the generator
  • Randomize: Generate by randomly sampling the latent space, or generate from a fixed, pre-computed latent vectors for a kick, snare and hat
  • Encode: regenerate drum sounds stored in the ads_demo/input_audio

Generations are saved in the ads_demo/generations folder. Pretrained model weights are saved in the ads_demo/checkpoints folder.

train.py arguments

  -c CONDITION,           --condition CONDITION
                            0: kick, 1: snare, 2:hat
  -d DIRECTION,           --direction DIRECTION
                            synthesis controls [0:4]
  -ds DIRECTION_SLIDER,   --direction_slider DIRECTION_SLIDER
                            how much to move in a particular direction
  -n NUM_GENERATIONS,     --num_generations NUM_GENERATIONS
                            number of examples to generate
  -v STOCASTIC_VARIATION, --stocastic_variation STOCASTIC_VARIATION
                            amount of inconsequential noise injected
  -r RANDOMIZE,           --randomize RANDOMIZE
                            if set to False, a fixed latent vector is used to generate a drum sound from each condition
  -e ENCODE,              --encode ENCODE
                            regenerates drum sounds from encoder folder

Supporting webpage

For more information, please visit the corresponding supporting website.

It contains the following:

  • Audio examples
  • Training data
  • Generations
  • Example usage within loop-based electronic music compositions
  • Generating Drum Loops
  • Interpolation demonstration
  • Supplementary figures
  • A link to the DAFx 2020 paper and presentation

References

[1] Drysdale, J., M. Tomczak, J. Hockman, Adversarial Synthesis of Drum Sounds. Proceedings of the 23rd International Conference on Digital Audio Effects (DAFX), 2020.
@inproceedings{drysdale2020ads,
  title={Adversarial synthesis of drum sounds},
  author={Drysdale, Jake and Tomczak, Maciek and Hockman, Jason},
  booktitle = {Proceedings of the International Conference on Digital Audio Effects (DAFx)},
  year={2020}
}

Help

Any questions please feel free to contact me on [email protected]

Owner
Sound and Music Analysis (SoMA) Group
The Sound and Music Analysis (SoMA) Group in the Digital Media Technology Laboratory at Birmingham City University.
Sound and Music Analysis (SoMA) Group
Trafffic prediction analysis using hybrid models - Machine Learning

Hybrid Machine learning Model Clone the Repository Create a new Directory as assests and download the model from the below link Model Link To Start th

1 Feb 08, 2022
Official code of CVPR 2021's PLOP: Learning without Forgetting for Continual Semantic Segmentation

PLOP: Learning without Forgetting for Continual Semantic Segmentation This repository contains all of our code. It is a modified version of Cermelli e

Arthur Douillard 116 Dec 14, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Torch implementation of SegNet and deconvolutional network

Torch implementation of SegNet and deconvolutional network

Fedor Chervinskii 5 Jul 17, 2020
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
(ICONIP 2020) MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image

MobileHand: Real-time 3D Hand Shape and Pose Estimation from Color Image This repo contains the source code for MobileHand, real-time estimation of 3D

90 Dec 12, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
A simple baseline for 3d human pose estimation in PyTorch.

3d_pose_baseline_pytorch A PyTorch implementation of a simple baseline for 3d human pose estimation. You can check the original Tensorflow implementat

weigq 312 Jan 06, 2023
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021