Style-based Neural Drum Synthesis with GAN inversion

Overview

Style-based Drum Synthesis with GAN Inversion Demo

TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the paper Adversarial Synthesis of Drum Sounds @ The 2020 DAFx Conference.

neural drum synthesis

Code

Dependencies

Python

Code has been developed with Python 3.6.13. It should work with other versions of Python 3, but has not been tested. Moreover, we rely on several third-party libraries, listed in requirements.txt. They can be installed with

$ pip install -r requirements.txt

Checkpoints

The tensorflow checkpoints for loading pre-trained network weights can be download here. Unzip the folder and save it into this projects directory: "style-drumsynth/checkpoints".

Usage

The code is contained within the ads_demo.py script, which enables conditional synthesises of drum sounds using a pretrained generator.

The following control parameters are available:

  • Condition: which type of drum to generation (kick, snare or hat)
  • Direction: "features", which principal direction to move in
  • Direction slider: How far to move in a particular direction
  • Number of generations: How many drums to generate
  • Stocastic Variation: Amount of inconsequential noise to inject into the generator
  • Randomize: Generate by randomly sampling the latent space, or generate from a fixed, pre-computed latent vectors for a kick, snare and hat
  • Encode: regenerate drum sounds stored in the ads_demo/input_audio

Generations are saved in the ads_demo/generations folder. Pretrained model weights are saved in the ads_demo/checkpoints folder.

train.py arguments

  -c CONDITION,           --condition CONDITION
                            0: kick, 1: snare, 2:hat
  -d DIRECTION,           --direction DIRECTION
                            synthesis controls [0:4]
  -ds DIRECTION_SLIDER,   --direction_slider DIRECTION_SLIDER
                            how much to move in a particular direction
  -n NUM_GENERATIONS,     --num_generations NUM_GENERATIONS
                            number of examples to generate
  -v STOCASTIC_VARIATION, --stocastic_variation STOCASTIC_VARIATION
                            amount of inconsequential noise injected
  -r RANDOMIZE,           --randomize RANDOMIZE
                            if set to False, a fixed latent vector is used to generate a drum sound from each condition
  -e ENCODE,              --encode ENCODE
                            regenerates drum sounds from encoder folder

Supporting webpage

For more information, please visit the corresponding supporting website.

It contains the following:

  • Audio examples
  • Training data
  • Generations
  • Example usage within loop-based electronic music compositions
  • Generating Drum Loops
  • Interpolation demonstration
  • Supplementary figures
  • A link to the DAFx 2020 paper and presentation

References

[1] Drysdale, J., M. Tomczak, J. Hockman, Adversarial Synthesis of Drum Sounds. Proceedings of the 23rd International Conference on Digital Audio Effects (DAFX), 2020.
@inproceedings{drysdale2020ads,
  title={Adversarial synthesis of drum sounds},
  author={Drysdale, Jake and Tomczak, Maciek and Hockman, Jason},
  booktitle = {Proceedings of the International Conference on Digital Audio Effects (DAFx)},
  year={2020}
}

Help

Any questions please feel free to contact me on [email protected]

Owner
Sound and Music Analysis (SoMA) Group
The Sound and Music Analysis (SoMA) Group in the Digital Media Technology Laboratory at Birmingham City University.
Sound and Music Analysis (SoMA) Group
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022