automatic color-grading

Overview

color-matcher

Description

color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, paintings and film sequences as well as light-field and stopmotion corrections. The methods behind the mappings are based on the approach from Reinhard et al., an analytical solution to a Multi-Variate Gaussian Distribution (MVGD) transfer, the Monge-Kantorovich solution as proposed by Pitie et al. and classical histogram matching.

release License GitHub Workflow Status coverage PyPi Dl2 PyPI Downloads

binder

Results

  Source Target Result
Photograph
Film sequence
Light-field correction
Paintings

Installation

  • via pip:
    1. install with pip3 install color-matcher
    2. type color-matcher -h to the command line once installation finished
  • from source:
    1. install Python from https://www.python.org/
    2. download the source using git clone https://github.com/hahnec/color-matcher.git
    3. go to the root directory cd color-matcher
    4. load dependencies $ pip3 install -r requirements.txt
    5. install with python3 setup.py install
    6. if installation ran smoothly, enter color-matcher -h to the command line

CLI Usage

From the root directory of your downloaded repo, you can run the tool on the provided test data by

color-matcher -s './tests/data/scotland_house.png' -r './tests/data/scotland_plain.png'

on a UNIX system where the result is found at ./tests/data/. A windows equivalent of the above command is

color-matcher --src=".\\tests\\data\\scotland_house.png" --ref=".\\tests\\data\\scotland_plain.png"

Alternatively, you can specify the method or select your images manually with

color-matcher --win --method='hm-mkl-hm'

Note that batch processing is possible by passing a source directory, e.g., via

color-matcher -s './tests/data/' -r './tests/data/scotland_plain.png'

More information on optional arguments, can be found using the help parameter

color-matcher -h

API Usage

from color_matcher import ColorMatcher
from color_matcher.io_handler import load_img_file, save_img_file, FILE_EXTS
from color_matcher.normalizer import Normalizer
import os

img_ref = load_img_file('./tests/data/scotland_plain.png')

src_path = '.'
filenames = [os.path.join(src_path, f) for f in os.listdir(src_path)
                     if f.lower().endswith(FILE_EXTS)]

for i, fname in enumerate(filenames):
    img_src = load_img_file(fname)
    obj = ColorMatcher(src=img_src, ref=img_ref, method='mkl')
    img_res = obj.main()
    img_res = Normalizer(img_res).uint8_norm()
    save_img_file(img_res, os.path.join(os.path.dirname(fname), str(i)+'.png'))

Citation

@misc{hahne2020plenopticam,
      title={PlenoptiCam v1.0: A light-field imaging framework},
      author={Christopher Hahne and Amar Aggoun},
      year={2020},
      eprint={2010.11687},
      archivePrefix={arXiv},
      primaryClass={eess.IV}
}

Author

Christopher Hahne

You might also like...
Spatial color quantization in Rust
Spatial color quantization in Rust

rscolorq Rust port of Derrick Coetzee's scolorq, based on the 1998 paper "On spatial quantization of color images" by Jan Puzicha, Markus Held, Jens K

Rendering color and depth images for ShapeNet models.
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Implementation of GGB color space
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

An end-to-end image translation model with weight-map for color constancy
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Comments
  • Color-matcher batch processing

    Color-matcher batch processing

    I've just discovered color-matcher and find it potentially very useful for preprocessing histopathological datasets for deep learning. I can't, however, find a way to use it in batch mode - that is - is there any way to load more than one source image and/or more than one target image to process larger image datasets in batch?

    opened by SahPet 4
  • Doc suggests pip3 for install, Anaconda seems to work with pip only

    Doc suggests pip3 for install, Anaconda seems to work with pip only

    I'm using Anaconda (Conda 4.9.2) and used the documentation's suggested pip3 install procedure for color-matcher, but I couldn't run it from the command prompt. However, when I installed it via pip (just pip) it worked fine.

    I ain't entirely sure if this fella got Python 3.8 and Python 2.7 both in there, but somehow I can only get it to run by entering only color-matcher in the command line after installing through pip as opposed to pip3.

    Might need an extra line in the documentation saying do this if you're using Anaconda or Python 2.x or something, I ain't entirely sure of what's going on behind the scenes really.

    opened by torridgristle 1
  • Rendering videos

    Rendering videos

    hi thanks for this great piece of code.

    I am doing some tests on videos, is there a specific mode to ensure temporal consistency for video rendering?

    I have tried a few image by image processing, and the results are subject to flickering, especially when there are strong intense areas, even small (the blinking crosswalk light in the below examples)

    thanks

    https://user-images.githubusercontent.com/29961693/178616708-e5b7fd6d-b2aa-4dd1-abe8-2908267621b5.mp4

    https://user-images.githubusercontent.com/29961693/178616722-381ff433-ebaa-423d-801b-a518816068c3.mp4

    opened by Tetsujinfr 1
  • [ Feature Request ] CLUT Output

    [ Feature Request ] CLUT Output

    The ability to save a CLUT of the color transformation would be useful for applying the transformation to other scenes / videos / games, and for tweaking the transformation with other tools for artistic purposes with color-matcher's output as the starting point.

    Look I got the early morning lightheadedness and I wanna gush about this program, this has saved me such a hassle trying to white balance the most fucked up of photos with purple skin, absolutely marvelous. Software intended for auto white-balance just made em all green, but this matched it to a collage of similar faces in better lighting and damn if it isn't just the best outcome I could imagine for the material. I could overhaul an entire dataset and augment the shit out of it if I wanted. This is baller.

    feature-request 
    opened by torridgristle 6
Releases(v0.5.0)
Repository for MDPGT

MD-PGT Repository for implementing and reproducing the results for the paper MDPGT: Momentum-based Decentralized Policy Gradient Tracking. Available E

Xian Yeow Lee 2 Dec 30, 2021
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
Code release for The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification (TIP 2020)

The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification Code release for The Devil is in the Channels: Mutual-Channel

PRIS-CV: Computer Vision Group 230 Dec 31, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022