Rendering color and depth images for ShapeNet models.

Overview

Color & Depth Renderer for ShapeNet


This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically based rendering (PBR) is featured based on blender2.79.


Outputs

  1. Color image (20 views)

color_1.png color_2.PNG

  1. Depth image (20 views)

depth_1.png depth_2.PNG

  1. Point cloud and normals (Back-projected from color & depth images)

point_cloud_1.png point_cloud_2.png

  1. Watertight meshes (fused from depth maps)

mesh_1.png mesh_2.png


Install

  1. We recommend to install this repository with conda.
    conda env create -f environment.yml
    conda activate renderer
    
  2. Install Pyfusion by
    cd ./external/pyfusion
    mkdir build
    cd ./build
    cmake ..
    make
    
    Afterwards, compile the Cython code in ./external/pyfusion by
    cd ./external/pyfusion
    python setup.py build_ext --inplace
    
  3. Download & Extract blender2.79b, and specify the path of your blender executable file at ./setting.py by
    g_blender_excutable_path = '../../blender-2.79b-linux-glibc219-x86_64/blender'
    

Usage

  1. Normalize ShapeNet models to a unit cube by

    python normalize_shape.py
    

    The ShapeNetCore.v2 dataset is put in ./datasets/ShapeNetCore.v2. Here we only present some samples in this repository.

  2. Generate multiple camera viewpoints for rendering by

    python create_viewpoints.py
    

    The camera extrinsic parameters will be saved at ./view_points.txt, or you can customize it in this script.

  3. Run renderer to render color and depth images by

    python run_render.py
    

    The rendered images are saved in ./datasets/ShapeNetRenderings. The camera intrinsic and extrinsic parameters are saved in ./datasets/camera_settings. You can change the rendering configurations at ./settings.py, e.g. image sizes and resolution.

  4. The back-projected point cloud and corresponding normals can be visualized by

    python visualization/draw_pc_from_depth.py
    
  5. Watertight meshes can be obtained by

    python depth_fusion.py
    

    The reconstructed meshes are saved in ./datasets/ShapeNetCore.v2_watertight


Citation

This library is used for data preprocessing in our work SK-PCN. If you find it helpful, please consider citing

@inproceedings{NEURIPS2020_ba036d22,
 author = {Nie, Yinyu and Lin, Yiqun and Han, Xiaoguang and Guo, Shihui and Chang, Jian and Cui, Shuguang and Zhang, Jian.J},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {16119--16130},
 publisher = {Curran Associates, Inc.},
 title = {Skeleton-bridged Point Completion: From Global Inference to Local Adjustment},
 url = {https://proceedings.neurips.cc/paper/2020/file/ba036d228858d76fb89189853a5503bd-Paper.pdf},
 volume = {33},
 year = {2020}
}


License

This repository is relased under the MIT License.

Owner
Yinyu Nie
Currently a Post-doc researcher in the Visual Computing Group, Technical University of Munich.
Yinyu Nie
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Self-supervised spatio-spectro-temporal represenation learning for EEG analysis

EEG-Oriented Self-Supervised Learning and Cluster-Aware Adaptation This repository provides a tensorflow implementation of a submitted paper: EEG-Orie

Wonjun Ko 4 Jun 09, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Dense Unsupervised Learning for Video Segmentation (NeurIPS*2021)

Dense Unsupervised Learning for Video Segmentation This repository contains the official implementation of our paper: Dense Unsupervised Learning for

Visual Inference Lab @TU Darmstadt 173 Dec 26, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Unsupervised Image-to-Image Translation

UNIT: UNsupervised Image-to-image Translation Networks Imaginaire Repository We have a reimplementation of the UNIT method that is more performant. It

Ming-Yu Liu 劉洺堉 1.9k Dec 26, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driving Systems"

Code Artifacts Code artifacts for the submission "Mind the Gap! A Study on the Transferability of Virtual vs Physical-world Testing of Autonomous Driv

Andrea Stocco 2 Aug 24, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
Neural Fixed-Point Acceleration for Convex Optimization

Licensing The majority of neural-scs is licensed under the CC BY-NC 4.0 License, however, portions of the project are available under separate license

Facebook Research 27 Oct 06, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022