modelvshuman is a Python library to benchmark the gap between human and machine vision

Overview

modelvshuman: Does your model generalise better than humans?

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with high-quality human comparison data.

๐Ÿ† Benchmark

The top-10 models are listed here; training dataset size is indicated in brackets. Additionally, standard ResNet-50 is included as the last entry of the table for comparison. Model ranks are calculated across the full range of 52 models that we tested. If your model scores better than some (or even all) of the models here, please open a pull request and we'll be happy to include it here!

Most human-like behaviour

winner model accuracy difference โ†“ observed consistency โ†‘ error consistency โ†‘ mean rank โ†“
๐Ÿฅ‡ CLIP: ViT-B (400M) .023 .758 .281 1
๐Ÿฅˆ SWSL: ResNeXt-101 (940M) .028 .752 .237 3.67
๐Ÿฅ‰ BiT-M: ResNet-101x1 (14M) .034 .733 .252 4
๐Ÿ‘ BiT-M: ResNet-152x2 (14M) .035 .737 .243 4.67
๐Ÿ‘ ViT-L (1M) .033 .738 .222 6.67
๐Ÿ‘ BiT-M: ResNet-152x4 (14M) .035 .732 .233 7.33
๐Ÿ‘ BiT-M: ResNet-50x1 (14M) .042 .718 .240 9
๐Ÿ‘ BiT-M: ResNet-50x3 (14M) .040 .726 .228 9
๐Ÿ‘ ViT-L (14M) .035 .744 .206 9.67
๐Ÿ‘ SWSL: ResNet-50 (940M) .041 .727 .211 11.33
... standard ResNet-50 (1M) .087 .665 .208 29

Highest out-of-distribution robustness

winner model OOD accuracy โ†‘ rank โ†“
๐Ÿฅ‡ ViT-L (14M) .733 1
๐Ÿฅˆ CLIP: ViT-B (400M) .708 2
๐Ÿฅ‰ ViT-L (1M) .706 3
๐Ÿ‘ SWSL: ResNeXt-101 (940M) .698 4
๐Ÿ‘ BiT-M: ResNet-152x2 (14M) .694 5
๐Ÿ‘ BiT-M: ResNet-152x4 (14M) .688 6
๐Ÿ‘ BiT-M: ResNet-101x3 (14M) .682 7
๐Ÿ‘ BiT-M: ResNet-50x3 (14M) .679 8
๐Ÿ‘ SimCLR: ResNet-50x4 (1M) .677 9
๐Ÿ‘ SWSL: ResNet-50 (940M) .677 10
... standard ResNet-50 (1M) .559 31

๐Ÿ”ง Installation

Simply clone the repository to a location of your choice and follow these steps:

  1. Set the repository home path by running the following from the command line:

    export MODELVSHUMANDIR=/absolute/path/to/this/repository/
    
  2. Install package (remove the -e option if you don't intend to add your own model or make any other changes)

    pip install -e .
    

๐Ÿ”ฌ User experience

Simply edit examples/evaluate.py as desired. This will test a list of models on out-of-distribution datasets, generating plots. If you then compile latex-report/report.tex, all the plots will be included in one convenient PDF report.

๐Ÿซ Model zoo

The following models are currently implemented:

If you e.g. add/implement your own model, please make sure to compute the ImageNet accuracy as a sanity check.

How to load a model

If you just want to load a model from the model zoo, this is what you can do:

    # loading a PyTorch model from the zoo
    from modelvshuman.models.pytorch.model_zoo import InfoMin
    model = InfoMin("InfoMin")

    # loading a Tensorflow model from the zoo
    from modelvshuman.models.tensorflow.model_zoo import efficientnet_b0
    model = efficientnet_b0("efficientnet_b0")
How to list all available models

All implemented models are registered by the model registry, which can then be used to list all available models of a certain framework with the following method:

    from modelvshuman import models
    
    print(models.list_models("pytorch"))
    print(models.list_models("tensorflow"))
How to add a new model

Adding a new model is possible for standard PyTorch and TensorFlow models. Depending on the framework (pytorch / tensorflow), open modelvshuman/models//model_zoo.py. Here, you can add your own model with a few lines of code - similar to how you would load it usually. If your model has a custom model definition, create a new subdirectory called modelvshuman/models//my_fancy_model/fancy_model.py which you can then import from model_zoo.py via from .my_fancy_model import fancy_model.

๐Ÿ“ Datasets

In total, 17 datasets with human comparison data collected under highly controlled laboratory conditions are available.

Twelve datasets correspond to parametric or binary image distortions. Top row: colour/grayscale, contrast, high-pass, low-pass (blurring), phase noise, power equalisation. Bottom row: opponent colour, rotation, Eidolon I, II and III, uniform noise. noise-stimuli

The remaining five datasets correspond to the following nonparametric image manipulations: sketch, stylized, edge, silhouette, texture-shape cue conflict. nonparametric-stimuli

How to load a dataset

Similarly, if you're interested in just loading a dataset, you can do this via:

   from modelvshuman.datasets import sketch      
   dataset = sketch(batch_size=16, num_workers=4)
How to list all available datasets
    from modelvshuman import datasets
    
    print(list(datasets.list_datasets().keys()))

๐Ÿ’ณ Credit

We collected psychophysical data ourselves, but we used existing image dataset sources. 12 datasets were obtained from Generalisation in humans and deep neural networks. 3 datasets were obtained from ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. Additionally, we used 1 dataset from Learning Robust Global Representations by Penalizing Local Predictive Power (sketch images from ImageNet-Sketch) and 1 dataset from ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness (stylized images from Stylized-ImageNet).

We thank all model authors and repository maintainers for providing the models described above.

Comments
  • Question about self-supervised models

    Question about self-supervised models

    Hello, thanks for the great toolbox~

    I'm little confusion about the results on self-supervised models, like SimCLR. It doesn't have the class-specifical classifier on ImageNet-1k. So how do you load the classifier weight? load an extra-trained classifier (like linear-probing protocol) or a fully-trained network (like end-to-end fine-tuning protocol)?

    And another question: If I just want to test the shape & texture accuracy, mentioned in Intriguing Properties of Vision Transformers, which dataset type should I choose?

    Thank you very much~

    opened by pengzhiliang 5
  • dataset path?

    dataset path?

    Hi --- first thank you a lot for this useful dataset and API!

    I'm trying to load the datasets using the following code, but got an error msg saying dataset sketch path not found: model-vs-human/datasets/sketch/dnn/

    Does this mean that I should download the sketch image dataset myself from the original source and put under this path? Little more documentation on how the image dataset should be structured will be very useful!

    from modelvshuman.datasets import sketch,      
    dataset = sketch(batch_size=16, num_workers=4)
    

    Thank you!

    opened by ahnchive 2
  • Question Regarding Human Raw Dataset

    Question Regarding Human Raw Dataset

    Hi! Thank you for providing a valuable dataset.

    As I dig into the raw data which contains human annotations, some questions raised in my mind. Below is how I analyzed the raw dataset in contrast experiment

    For an image named 0580_cop_dnn_c05_bicycle_10_n03792782_10129.png, I extracted rows in which image_id matches 'c05_bicycle_10_n03792782_10129.png'. Then, I got the following 4 rows. Here, human_annotation is a simple concatenation of all csv files in contrast experiment. image

    Below is the visualization of image 0580_cop_dnn_c05_bicycle_10_n03792782_10129.png image

    Although the image is not very clear, I do not fully agree with the human predictions. (They predicted 'clock', 'oven', 'bear', 'keyboard' -- It is very clear that the figure is not a keyboard.) Is there anything wrong or I missed in the analysis?

    Thanks,

    opened by jiyounglee-0523 2
  • Request for data to reproduce figures

    Request for data to reproduce figures

    Very interesting work and thanks very much for releasing it publicly. We are working on extending some of your results/studies, could you please provide more information related to Figure 2?

    Figure 2 compares several models, but they are not all labeled. I am interested in finding out the accuracy-distortion tradeoff for each model. The figure shows this information at a coarse level, such as to compare all self-supervised models, adversarially trained models, etc. Would be perfect if you could provide the model-name (corresponding to your model zoo) and its corresponding performance at various distortion levels for the 12 distortion types that are considered.

    Thanks again, looking forward to hearing from you!

    opened by vihari 2
  • not able to reproduce the results

    not able to reproduce the results

    Firstly thanks for sharing the interesting paper and code!

    I followed the installation steps but running python examples/evaluate.py (didn't edit anything) resulting the following strange error. Could the authors give some insights on the reasons?

    Plotting accuracy for dataset colour The following model(s) were not found: alexnet List of possible models in this dataset: ['bagnet33' 'resnet50' 'simclr_resnet50x1'] The following model(s) were not found: subject-* List of possible models in this dataset: ['bagnet33' 'resnet50' 'simclr_resnet50x1'] Traceback (most recent call last): File "examples/evaluate.py", line 28, in run_plotting() File "examples/evaluate.py", line 18, in run_plotting figure_directory_name = figure_dirname) File "/home/eric/model_vs_human/modelvshuman/plotting/plot.py", line 108, in plot result_dir=result_dir) File "/home/eric/model_vs_human/modelvshuman/plotting/plot.py", line 744, in plot_accuracy result_dir=result_dir, plot_type="accuracy") File "/home/eric/model_vs_human/modelvshuman/plotting/plot.py", line 772, in plot_general_analyses experiment=e) File "/home/eric/model_vs_human/modelvshuman/plotting/analyses.py", line 254, in get_result_df r = self.analysis(subdat) File "/home/eric/model_vs_human/modelvshuman/plotting/analyses.py", line 284, in analysis self._check_dataframe(df) File "/home/eric/model_vs_human/modelvshuman/plotting/analyses.py", line 24, in _check_dataframe assert len(df) > 0, "empty dataframe" AssertionError: empty dataframe

    opened by largenn 2
  • Question about shape bias

    Question about shape bias

    Could you please provide the formula to get the shape bias? Currently, I can successfully run this repo with my own model, but I am confused about how the shape bias is abtained. I will be very gratefully if you can elaborate it. Thanks!

    opened by YuanLiuuuuuu 1
  • Difficulties loading adversarially trained models

    Difficulties loading adversarially trained models

    I didn't succeed in loading the adversarially trained models. run_evaluation results in the following error:

    HTTP Error 403: Server failed to authenticate the request. Make sure the value of Authorization header is formed correctly including the signature.

    Any idea how to fix this?

    opened by lukasShuber 1
  • Update license info

    Update license info

    In https://github.com/bethgelab/model-vs-human/blob/master/setup.cfg#L18 we state LGPLv3 but we should instead refer to https://github.com/bethgelab/model-vs-human/tree/master/licenses

    documentation 
    opened by rgeirhos 1
  • Clip Improvements

    Clip Improvements

    Two changes:

    1. Explicitly cast the images to device (previous code caused problems when training on google colab);
    2. Compute the zero shot weights needed by CLIP only once and recycle them for subsequent batches. Since the classes remain fixed, computing this for every batch is not necessary and greatly slows down experiments.
    opened by yurigalindo 1
  • Feature request: Machine readable results, e.g. CSV

    Feature request: Machine readable results, e.g. CSV

    Currently, the toolbox saves Latex tables and plots with the resulting accuracies and error consistencies. For custom plotting routines and similar, it would be great to have these numbers additionally in an easy-to-parse format, e.g. CSV or JSON.

    enhancement 
    opened by dekuenstle 0
  • Feature request: Simpler loading of custom models

    Feature request: Simpler loading of custom models

    Using your toolbox with the built-in models is straightforward, but we would like to compare some custom pytorch models. It would be great to have a routine to add these models (i.e. subclasses of nn.Module) to the toolbox registry from your own script. If this is already possible, it would be great if you could share an example.

    Currently, we add the model inside the toolbox's files which makes extensions complicated and redundant (e.g. name of model in the path, the function name, the plotting routine).

    Thanks David

    enhancement 
    opened by dekuenstle 2
  • BiT models via timm?

    BiT models via timm?

    had difficulties obtaining the BiT models via pytorch image models. I then used:

    e.g.,

    import timm m = timm.create_model('resnetv2_152x12_bitm', pretrained=True)

    in pytorch model_zoo.py.

    This worked perfectly.

    opened by lukasShuber 0
Owner
Bethge Lab
Perceiving Neural Networks
Bethge Lab
The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 2021)

EIGNN: Efficient Infinite-Depth Graph Neural Networks The official implementation of EIGNN: Efficient Infinite-Depth Graph Neural Networks (NeurIPS 20

Juncheng Liu 14 Nov 22, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
QT Py Media Knob using rotary encoder & neopixel ring

QTPy-Knob QT Py USB Media Knob using rotary encoder & neopixel ring The QTPy-Knob features: Media knob for volume up/down/mute with "qtpy-knob.py" Cir

Tod E. Kurt 56 Dec 30, 2022
๐ŸŽƒ Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage ็กฌไปถ๏ผš Windows10ใ€GPU๏ผšnvdia GTX 1060 ใ€ๆ™ฎ้€šRBG็›ธๆœบ ่ฝฏไปถ๏ผš con

CrashKing 1 Jan 11, 2022
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization โ”œโ”€โ”€ LICENSE โ”œโ”€โ”€ Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
A collection of Jupyter notebooks to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

StyleGAN3 CLIP-based guidance StyleGAN3 + CLIP StyleGAN3 + inversion + CLIP This repo is a collection of Jupyter notebooks made to easily play with St

Eugenio Herrera 176 Dec 30, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection".

A2S-USOD Code for our work "Activation to Saliency: Forming High-Quality Labels for Unsupervised Salient Object Detection". Code will be released upon

15 Dec 16, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator ๐ŸŒŠ Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Jan 06, 2023
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022