DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

Overview

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias, Petros Daras.

Introduction

DeepMoCap constitutes a low-cost, marker-based optical motion capture method that consumes multiple spatio-temporally aligned infrared-depth sensor streams using retro-reflective straps and patches (reflectors).

DeepMoCap explores motion capture by automatically localizing and labeling reflectors on depth images and, subsequently, on 3D space. Introducing a non-parametric representation to encode the temporal correlation among pairs of colorized depthmaps and 3D optical flow frames, a multi-stage Fully Convolutional Network (FCN) architecture is proposed to jointly learn reflector locations and their temporal dependency among sequential frames. The extracted reflector 2D locations are spatially mapped in 3D space, resulting in robust optical data extraction. To this end, the subject's motion is efficiently captured by applying a template-based fitting technique.

Teaser?

Teaser?

This project is licensed under the terms of the license.

Contents

  1. Testing
  2. Datasets
  3. Citation

Testing

For testing the FCN model, please visit "testing/" enabling the 3D optical data extraction from colorized depth and 3D optical flow input. The data should be appropriately formed and the DeepMoCap FCN model should be placed to "testing/model/keras".

The proposed FCN is evaluated on the DMC2.5D dataset measuring mean Average Precision (mAP) for the entire set, based on Percentage of Correct Keypoints (PCK) thresholds (a = 0.05). The proposed method outperforms the competitive methods as shown in the table below.

Method Total Total (without end-reflectors)
CPM 92.16% 95.27%
CPM+PAFs 92.79% 95.61%
CPM+PAFs + 3D OF 92.84% 95.67%
Proposed 93.73% 96.77%

Logo

Supplementaty material (video)

Teaser?

Datasets

Two datasets have been created and made publicly available for evaluation purposes; one comprising multi-view depth and 3D optical flow annotated images (DMC2.5D), and a second, consisting of spatio-temporally aligned multi-view depth images along with skeleton, inertial and ground truth MoCap data (DMC3D).

DMC2.5D

The DMC2.5D Dataset was captured in order to train and test the DeepMoCap FCN. It comprises pairs per view of:

The samples were randomly selected from 8 subjects. More specifically, 25K single-view pair samples were annotated with over 300K total keypoints (i.e., reflector 2D locations of current and previous frames on the image), trying to cover a variety of poses and movements in the scene. 20K, 3K and 2K samples were used for training, validation and testing the FCN model, respectively. The annotation was semi-automatically realized by applying image processing and 3D vision techniques, while the dataset was manually refined using the 2D-reflectorset-annotator.

Teaser?

To get the DMC2.5D dataset, please contact the owner of the repository via github or email ([email protected]).

DMC3D

Teaser?

The DMC3D dataset consists of multi-view depth and skeleton data as well as inertial and ground truth motion capture data. Specifically, 3 Kinect for Xbox One sensors were used to capture the IR-D and Kinect skeleton data along with 9 XSens MT inertial measurement units (IMU) to enable the comparison between the proposed method and inertial MoCap approaches. Further, a PhaseSpace Impulse X2 solution was used to capture ground truth MoCap data. The preparation of the DMC3D dataset required the spatio-temporal alignment of the modalities (Kinect, PhaseSpace, XSens MTs). The setup used for the Kinect recordings provides spatio-temporally aligned IR-D and skeleton frames.

Exercise # of repetitions # of frames Type
Walking on the spot 10-20 200-300 Free
Single arm raise 10-20 300-500 Bilateral
Elbow flexion 10-20 300-500 Bilateral
Knee flexion 10-20 300-500 Bilateral
Closing arms above head 6-12 200-300 Free
Side steps 6-12 300-500 Bilateral
Jumping jack 6-12 200-300 Free
Butt kicks left-right 6-12 300-500 Bilateral
Forward lunge left-right 4-10 300-500 Bilateral
Classic squat 6-12 200-300 Free
Side step + knee-elbow 6-12 300-500 Bilateral
Side reaches 6-12 300-500 Bilateral
Side jumps 6-12 300-500 Bilateral
Alternate side reaches 6-12 300-500 Bilateral
Kick-box kicking 2-6 200-300 Free

The annotation tool for the spatio-temporally alignment of the 3D data will be publicly available soon.

To get the DMC3D dataset, please contact the owner of the repository via github or email ([email protected]).

Citation

This paper has been published in MDPI Sensors, Depth Sensors and 3D Vision Special Issue [PDF]

Please cite the paper in your publications if it helps your research:


@article{chatzitofis2019deepmocap,
  title={DeepMoCap: Deep Optical Motion Capture Using Multiple Depth Sensors and Retro-Reflectors},
  author={Chatzitofis, Anargyros and Zarpalas, Dimitrios and Kollias, Stefanos and Daras, Petros},
  journal={Sensors},
  volume={19},
  number={2},
  pages={282},
  year={2019},
  publisher={Multidisciplinary Digital Publishing Institute}
}
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code

Python wrapper class for OpenVINO Model Server. User can submit inference request to OVMS with just a few lines of code.

Yasunori Shimura 7 Jul 27, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Scripts for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation and a convolutional neural network (CNN) for image classification

About subwAI subwAI - a project for training an AI to play the endless runner Subway Surfers using a supervised machine learning approach by imitation

82 Jan 01, 2023
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023