Improving Object Detection by Label Assignment Distillation

Related tags

Deep LearningCoLAD
Overview

Improving Object Detection by Label Assignment Distillation

This is the official implementation of the WACV 2022 paper Improving Object Detection by Label Assignment Distillation. We provide the code for Label Assignement Distillation (LAD), training logs and several model checkpoints.

Table of Contents

  1. Introduction
  2. Installation
  3. Usage
  4. Experiments
  5. Citation

Introduction

This is the official repository for the paper Improving Object Detection by Label Assignment Distillation.

Soft Label Distillation concept (a) Label Assignment Distillation concept (b)
  • Distillation in Object Detection is typically achived by mimicking the teacher's output directly, such soft-label distillation or feature mimicking (Fig 1.a).
  • We propose the concept of Label Assignment Distillation (LAD), which solves the label assignment problems from distillation perspective, thus allowing the student learns from the teacher's knowledge without direct mimicking (Fig 1.b). LAD is very general, and applied to many dynamic label assignment methods. Following figure shows a concrete example of how to adopt Probabilistic Anchor Assignment (PAA) to LAD.
Probabilistic Anchor Assignment (PAA) Label Assignment Distillation (LAD) based on PAA
  • We demonstrate a number of advantages of LAD, notably that it is very simple and effective, flexible to use with most of detectors, and complementary to other distillation techniques.
  • Later, we introduced the Co-learning dynamic Label Assignment Distillation (CoLAD) to allow two networks to be trained mutually based on a dynamic switching criterion. We show that two networks trained with CoLAD are significantly better than if each was trained individually, given the same initialization.


Installation

  • Create environment:
conda create -n lad python=3.7 -y
conda activate lad
  • Install dependencies:
conda install pytorch=1.7.0 torchvision cudatoolkit=10.2 -c pytorch -y
pip install openmim future tensorboard sklearn timm==0.3.4
mim install mmcv-full==1.2.5
mim install mmdet==2.10.0
pip install -e ./

Usage

Train the model

#!/usr/bin/env bash
set -e
export GPUS=2
export CUDA_VISIBLE_DEVICES=0,2

CFG="configs/lad/paa_lad_r50_r101p1x_1x_coco.py"
WORKDIR="/checkpoints/lad/paa_lad_r50_r101p1x_1x_coco"

mim train mmdet $CFG --work-dir $WORKDIR \
    --gpus=$GPUS --launcher pytorch --seed 0 --deterministic

Test the model

#!/usr/bin/env bash
set -e
export GPUS=2
export CUDA_VISIBLE_DEVICES=0,2

CFG="configs/paa/paa_lad_r50_r101p1x_1x_coco.py"
CKPT="/checkpoints/lad/paa_lad_r50_r101p1x_1x_coco/epoch_12.pth"

mim test mmdet $CFG --checkpoint $CKPT --gpus $GPUS --launcher pytorch --eval bbox

Experiments

1. A Pilot Study - Preliminary Comparison.

Table 2: Compare the performance of the student PAA-R50 using Soft-Label, Label Assignment Distillation (LAD) and their combination (SoLAD) on COCO validation set.

Method Teacher Student gamma mAP Improve Config Download
Baseline None PAA-R50 (baseline) 2 40.4 - config model | log
Soft-Label-KL loss PAA-R101 PAA-R50 0.5 41.3 +0.9 config model | log
LAD (ours) PAA-R101 PAA-R50 2 41.6 +1.2 config model | log
SoLAD(ours) PAA-R101 PAA-R50 0.5 42.4 +2.0 config model | log

2. A Pilot Study - Does LAD need a bigger teacher network?

Table 3: Compare Soft-Label and Label Assignment Distillation (LAD) on COCO validation set. Teacher and student use ResNet50 and ResNet101 backbone, respectively. 2× denotes the 2× training schedule.

Method Teacher Student mAP Improve Config Download
Baseline None PAA-R50 40.4 - config model | log
Baseline (1x) None PAA-R101 42.6 - config model | log
Baseline (2x) None PAA-R101 43.5 +0.9 config model | log
Soft-Label PAA-R50 PAA-R101 40.4 -2.2 config model | log
LAD (our) PAA-R50 PAA-R101 43.3 +0.7 config model | log

3. Compare with State-ot-the-art Label Assignment methods

We use the PAA-R50 3x pretrained with multi-scale on COCO as the initial teacher. The teacher was evaluated with 43:3AP on the minval set. We train our network with the COP branch, and the post-processing steps are similar to PAA.

  • Table 7.1 Backbone ResNet-101, train 2x schedule, Multi-scale training. Results are evaluated on the COCO testset.
Method AP AP50 AP75 APs APm APl Download
FCOS 41.5 60.7 45.0 24.4 44.8 51.6
NoisyAnchor 41.8 61.1 44.9 23.4 44.9 52.9
FreeAnchor 43.1 62.2 46.4 24.5 46.1 54.8
SAPD 43.5 63.6 46.5 24.9 46.8 54.6
MAL 43.6 61.8 47.1 25.0 46.9 55.8
ATSS 43.6 62.1 47.4 26.1 47.0 53.6
AutoAssign 44.5 64.3 48.4 25.9 47.4 55.0
PAA 44.8 63.3 48.7 26.5 48.8 56.3
OTA 45.3 63.5 49.3 26.9 48.8 56.1
IQDet 45.1 63.4 49.3 26.7 48.5 56.6
CoLAD (ours) 46.0 64.4 50.6 27.9 49.9 57.3 config | model | log

4. Appendix - Ablation Study of Conditional Objectness Prediction (COP)

Table 1 - Appendix: Compare different auxiliary predictions: IoU, Implicit Object prediction (IOP), and Conditional Objectness prediction (COP), with ResNet-18 and ResNet-50 backbones. Experiments on COCO validate set.

IoU IOP COP ResNet-18 ResNet-50
✔️ 35.8 (config | model | log) 40.4 (config | model | log)
✔️ ✔️ 36.7 (config | model | log) 41.6 (config | model | log)
✔️ ✔️ 36.9 (config | model | log) 41.6 (config | model | log)
✔️ 36.6 (config | model | log) 41.1 (config | model | log)
✔️ 36.9 (config | model | log) 41.2 (config | model | log)

Citation

Please cite the paper in your publications if it helps your research:

@misc{nguyen2021improving,
      title={Improving Object Detection by Label Assignment Distillation}, 
      author={Chuong H. Nguyen and Thuy C. Nguyen and Tuan N. Tang and Nam L. H. Phan},
      year={2021},
      eprint={2108.10520},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
  • On Sep 25 2021, we found that there is a concurrent (unpublished) work from Jianfend Wang, that shares the key idea about Label Assignment Distillation. However, both of our works are independent and original. We would like to acknowledge his work and thank for his help to clarify the issue.
Owner
Cybercore Co. Ltd
Cybercore Co. Ltd
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
PyTorch code for the "Deep Neural Networks with Box Convolutions" paper

Box Convolution Layer for ConvNets Single-box-conv network (from `examples/mnist.py`) learns patterns on MNIST What This Is This is a PyTorch implemen

Egor Burkov 515 Dec 18, 2022
CCPD: a diverse and well-annotated dataset for license plate detection and recognition

CCPD (Chinese City Parking Dataset, ECCV) UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much m

detectRecog 1.8k Dec 30, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

VoxHRNet This is the official implementation of the following paper: Whole Brain Segmentation with Full Volume Neural Network Yeshu Li, Jonathan Cui,

Microsoft 12 Nov 24, 2022
This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds

LiDARTag Overview This is a package for LiDARTag, described in paper: LiDARTag: A Real-Time Fiducial Tag System for Point Clouds (PDF)(arXiv). This wo

University of Michigan Dynamic Legged Locomotion Robotics Lab 159 Dec 21, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Beginner-friendly repository for Hacktober Fest 2021. Start your contribution to open source through baby steps. 💜

Hacktober Fest 2021 🎉 Open source is changing the world – one contribution at a time! 🎉 This repository is made for beginners who are unfamiliar wit

Abhilash M Nair 32 Dec 11, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022