CCPD: a diverse and well-annotated dataset for license plate detection and recognition

Overview

CCPD (Chinese City Parking Dataset, ECCV)

UPdate on 10/03/2019. CCPD Dataset is now updated. We are confident that images in subsets of CCPD is much more challenging than before with over 300k images and refined annotations.

(If you are benefited from this dataset, please cite our paper.) It can be downloaded from and extract by (tar xf CCPD2019.tar.xz):

train\val\test split

The split file is available under 'split/' folder.

Images in CCPD-Base is split to train/val set. Sub-datasets (CCPD-DB, CCPD-Blur, CCPD-FN, CCPD-Rotate, CCPD-Tilt, CCPD-Challenge) in CCPD are exploited for test.


UPdate on 16/09/2020. We add a new energy vehicle sub-dataset (CCPD-Green) which has an eight-digit license plate number.

It can be downloaded from:

metric

As each image in CCPD contains only a single license plate (LP). Therefore, we do not consider recall and concerntrate on precision. Detectors are allowed to predict only one bounding box for each image.

  • Detection. For each image, the detector outputs only one bounding box. The bounding box is considered to be correct if and only if its IoU with the ground truth bounding box is more than 70% (IoU > 0.7). Also, we compute AP on the test set.

  • Recognition. A LP recognition is correct if and only if all characters in the LP number are correctly recognized.

benchmark

If you want to provide more baseline results or have problems about the provided results. Please raise an issue.

detection
FPS AP DB Blur FN Rotate Tilt Challenge
Faster-RCNN 11 84.98 66.73 81.59 76.45 94.42 88.19 89.82
SSD300 25 86.99 72.90 87.06 74.84 96.53 91.86 90.06
SSD512 12 87.83 69.99 84.23 80.65 96.50 91.26 92.14
YOLOv3-320 52 87.23 71.34 82.19 82.44 96.69 89.17 91.46
recognition

We provide baseline methods for recognition by appending a LP recognition model Holistic-CNN (HC) (refer to paper 'Holistic recognition of low quality license plates by cnn using track annotated data') to the detector.

FPS AP DB Blur FN Rotate Tilt Challenge
SSD512+HC 11 43.42 34.47 25.83 45.24 52.82 52.04 44.62

The column 'AP' shows the precision on all the test set. The test set contains six parts: DB(ccpd_db/), Blur(ccpd_blur), FN(ccpd_fn), Rotate(ccpd_rotate), Tilt(ccpd_tilt), Challenge(ccpd_challenge).

This repository is designed to provide an open-source dataset for license plate detection and recognition, described in 《Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline》. This dataset is open-source under MIT license. More details about this dataset are avialable at our ECCV 2018 paper (also available in this github) 《Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline》. If you are benefited from this paper, please cite our paper as follows:

@inproceedings{xu2018towards,
  title={Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline},
  author={Xu, Zhenbo and Yang, Wei and Meng, Ajin and Lu, Nanxue and Huang, Huan},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={255--271},
  year={2018}
}

Specification of the categorise above:

  • rpnet: The training code for a license plate localization network and an end-to-end network which can detect the license plate bounding box and recognize the corresponding license plate number in a single forward. In addition, demo.py and demo folder are provided for playing demo.

  • paper.pdf: Our published eccv paper.

Demo

Demo code and several images are provided under rpnet/ folder, after you obtain "fh02.pth" by downloading or training, run demo as follows, the demo code will modify images in rpnet/demo folder and you can check by opening demo images.


  python demo.py -i [ROOT/rpnet/demo/] -m [***/fh02.pth]

The nearly well-trained model for testing and fun (Short of time, trained only for 5 epochs, but enough for testing):

We encourage the comparison with SOTA detector like FCOS rather than RPnet as the architecture of RPnet is very old fashioned.

Training instructions

Input parameters are well commented in python codes(python2/3 are both ok, the version of pytorch should be >= 0.3). You can increase the batchSize as long as enough GPU memory is available.

Enviorment (not so important as long as you can run the code):

  • python: pytorch(0.3.1), numpy(1.14.3), cv2(2.4.9.1).
  • system: Cuda(release 9.1, V9.1.85)

For convinence, we provide a trained wR2 model and a trained rpnet model, you can download them from google drive or baiduyun.

First train the localization network (we provide one as before, you can download it from google drive or baiduyun) defined in wR2.py as follows:


  python wR2.py -i [IMG FOLDERS] -b 4

After wR2 finetunes, we train the RPnet (we provide one as before, you can download it from google drive or baiduyun) defined in rpnet.py. Please specify the variable wR2Path (the path of the well-trained wR2 model) in rpnet.py.


  python rpnet.py -i [TRAIN IMG FOLDERS] -b 4 -se 0 -f [MODEL SAVE FOLDER] -t [TEST IMG FOLDERS]

Test instructions

After fine-tuning RPnet, you need to uncompress a zip folder and select it as the test directory. The argument after -s is a folder for storing failure cases.


  python rpnetEval.py -m [MODEL PATH, like /**/fh02.pth] -i [TEST DIR] -s [FAILURE SAVE DIR]

Dataset Annotations

Annotations are embedded in file name.

A sample image name is "025-95_113-154&383_386&473-386&473_177&454_154&383_363&402-0_0_22_27_27_33_16-37-15.jpg". Each name can be splited into seven fields. Those fields are explained as follows.

  • Area: Area ratio of license plate area to the entire picture area.

  • Tilt degree: Horizontal tilt degree and vertical tilt degree.

  • Bounding box coordinates: The coordinates of the left-up and the right-bottom vertices.

  • Four vertices locations: The exact (x, y) coordinates of the four vertices of LP in the whole image. These coordinates start from the right-bottom vertex.

  • License plate number: Each image in CCPD has only one LP. Each LP number is comprised of a Chinese character, a letter, and five letters or numbers. A valid Chinese license plate consists of seven characters: province (1 character), alphabets (1 character), alphabets+digits (5 characters). "0_0_22_27_27_33_16" is the index of each character. These three arrays are defined as follows. The last character of each array is letter O rather than a digit 0. We use O as a sign of "no character" because there is no O in Chinese license plate characters.

provinces = ["皖", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "京", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "警", "学", "O"]
alphabets = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',
             'X', 'Y', 'Z', 'O']
ads = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X',
       'Y', 'Z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'O']
  • Brightness: The brightness of the license plate region.

  • Blurriness: The Blurriness of the license plate region.

Acknowledgement

If you have any problems about CCPD, please contact [email protected].

Please cite the paper 《Towards End-to-End License Plate Detection and Recognition: A Large Dataset and Baseline》, if you benefit from this dataset.

Owner
detectRecog
I focus on object detection&&object recognition and some topics concerning autonomous driving.
detectRecog
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Contains source code for the winning solution of the xView3 challenge

Winning Solution for xView3 Challenge This repository contains source code and pretrained models for my (Eugene Khvedchenya) solution to xView 3 Chall

Eugene Khvedchenya 51 Dec 30, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
3D-aware GANs based on NeRF (arXiv).

CIPS-3D This repository will contain the code of the paper, CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis.

Peterou 563 Dec 31, 2022
Efficient training of deep recommenders on cloud.

HybridBackend Introduction HybridBackend is a training framework for deep recommenders which bridges the gap between evolving cloud infrastructure and

Alibaba 111 Dec 23, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
Official Implementation of DDOD (Disentangle your Dense Object Detector), ACM MM2021

Disentangle Your Dense Object Detector This repo contains the supported code and configuration files to reproduce object detection results of Disentan

loveSnowBest 51 Jan 07, 2023
Simple reimplemetation experiments about FcaNet

FcaNet-CIFAR An implementation of the paper FcaNet: Frequency Channel Attention Networks on CIFAR10/CIFAR100 dataset. how to run Code: python Cifar.py

76 Feb 04, 2021
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022