VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

Related tags

Deep LearningVoxHRNet
Overview

VoxHRNet

This is the official implementation of the following paper:

Whole Brain Segmentation with Full Volume Neural Network

Yeshu Li, Jonathan Cui, Yilun Sheng, Xiao Liang, Jingdong Wang, Eric I-Chao Chang, Yan Xu

Computerized Medical Imaging and Graphics

[arXiv]

Network

architecture

Installation

The following environments/libraries are required:

  • Python 3
  • yacs
  • SimpleITK
  • apex
  • pytorch
  • nibabel
  • numpy
  • scikit-image
  • scipy

Quick Start

Data Preparation

Download the LPBA40 and Hammers n30r95 datasets.

After renaming, your directory tree should look like:

$ROOT
├── data
│   └── LPBA40_N4_RN
│       ├── aseg_TEST001.nii.gz
│       ├── ...
│       ├── aseg_TEST010.nii.gz
│       ├── aseg_TRAIN001.nii.gz
│       ├── ...
│       ├── aseg_TRAIN027.nii.gz
│       ├── aseg_VALIDATE001.nii.gz
│       ├── ...
│       ├── aseg_VALIDATE003.nii.gz
│       ├── orig_TEST001.nii.gz
│       ├── ...
│       ├── orig_TEST010.nii.gz
│       ├── orig_TRAIN001.nii.gz
│       ├── ...
│       ├── orig_TRAIN027.nii.gz
│       ├── orig_VALIDATE001.nii.gz
│       ├── ...
│       └── orig_VALIDATE003.nii.gz
└── VoxHRNet
    ├── voxhrnet.py
    ├── ...
    └── train.py

Create a YACS configuration file and make changes for specific training/test settings accordingly. We use config_lpba.yaml as an example as follows.

Train

Run

python3 train.py --cfg config_lpba.yaml

Test

Run

python3 test.py --cfg config_lpba.yaml

Pretrained Models

For the LPBA40 dataset, we number the subjects from 1-40 alphabetically and split them into 4 folds sequentially. The k-th fold is selected as the test set in the k-th split.

For the Hammers n30r95 dataset, the first 20 subjects and last 10 subjects are chosen as the training and test set respectively.

Their pretrained models can be found in the release page of this repository.

Citation

Please cite our work if you find it useful in your research:

@article{LI2021101991,
title = {Whole brain segmentation with full volume neural network},
journal = {Computerized Medical Imaging and Graphics},
volume = {93},
pages = {101991},
year = {2021},
issn = {0895-6111},
doi = {https://doi.org/10.1016/j.compmedimag.2021.101991},
url = {https://www.sciencedirect.com/science/article/pii/S0895611121001403},
author = {Yeshu Li and Jonathan Cui and Yilun Sheng and Xiao Liang and Jingdong Wang and Eric I.-Chao Chang and Yan Xu},
keywords = {Brain, Segmentation, Neural networks, Deep learning},
abstract = {Whole brain segmentation is an important neuroimaging task that segments the whole brain volume into anatomically labeled regions-of-interest. Convolutional neural networks have demonstrated good performance in this task. Existing solutions, usually segment the brain image by classifying the voxels, or labeling the slices or the sub-volumes separately. Their representation learning is based on parts of the whole volume whereas their labeling result is produced by aggregation of partial segmentation. Learning and inference with incomplete information could lead to sub-optimal final segmentation result. To address these issues, we propose to adopt a full volume framework, which feeds the full volume brain image into the segmentation network and directly outputs the segmentation result for the whole brain volume. The framework makes use of complete information in each volume and can be implemented easily. An effective instance in this framework is given subsequently. We adopt the 3D high-resolution network (HRNet) for learning spatially fine-grained representations and the mixed precision training scheme for memory-efficient training. Extensive experiment results on a publicly available 3D MRI brain dataset show that our proposed model advances the state-of-the-art methods in terms of segmentation performance.}
}

Acknowledgement

A large part of the code is borrowed from HRNet.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

You might also like...
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Recovering Brain Structure Network Using Functional Connectivity
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Comments
  • How to get the LPBA40_N4_RN dataset for the example

    How to get the LPBA40_N4_RN dataset for the example

    Thanks for your great work. I'm trying to run the example but stuck by the dataset. It seems there are multiple LPBA40 datasets on the give site LPBA40, and the data file format are not nii as in the example. Is there a downloadable LPBA40_N4_RN dataset or could you give some details on how to generate the dataset in the example?

    opened by mgcyung 2
  • ACTION REQUIRED: Microsoft needs this private repository to complete compliance info

    ACTION REQUIRED: Microsoft needs this private repository to complete compliance info

    There are open compliance tasks that need to be reviewed for your VoxHRNet repo.

    Action required: 4 compliance tasks

    To bring this repository to the standard required for 2021, we require administrators of this and all Microsoft GitHub repositories to complete a small set of tasks within the next 60 days. This is critical work to ensure the compliance and security of your microsoft GitHub organization.

    Please take a few minutes to complete the tasks at: https://repos.opensource.microsoft.com/orgs/microsoft/repos/VoxHRNet/compliance

    • The GitHub AE (GitHub inside Microsoft) migration survey has not been completed for this private repository
    • No Service Tree mapping has been set for this repo. If this team does not use Service Tree, they can also opt-out of providing Service Tree data in the Compliance tab.
    • No repository maintainers are set. The Open Source Maintainers are the decision-makers and actionable owners of the repository, irrespective of administrator permission grants on GitHub.
    • Classification of the repository as production/non-production is missing in the Compliance tab.

    You can close this work item once you have completed the compliance tasks, or it will automatically close within a day of taking action.

    If you no longer need this repository, it might be quickest to delete the repo, too.

    GitHub inside Microsoft program information

    More information about GitHub inside Microsoft and the new GitHub AE product can be found at https://aka.ms/gim.

    FYI: current admins at Microsoft include @scarlett2018, @EricChangMSR, @simon1727

    opened by microsoft-github-operations[bot] 0
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
On-device wake word detection powered by deep learning.

Porcupine Made in Vancouver, Canada by Picovoice Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening

Picovoice 2.8k Dec 29, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022