An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

Overview

GLOM TensorFlow Twitter

PyPI Flake8 Lint Upload Python Package Python Version

Binder Open In Colab

GitHub license PEP8 GitHub stars GitHub followers Twitter Follow

This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neural fields, contrastive representation learning, distillation and capsules to be combined. This was suggested by Geoffrey Hinton in his paper "How to represent part-whole hierarchies in a neural network".

Further, Yannic Kilcher's video and Phil Wang's repo was very helpful for me to implement this project.

Installation

Run the following to install:

pip install glom-tf

Developing glom-tf

To install glom-tf, along with tools you need to develop and test, run the following in your virtualenv:

git clone https://github.com/Rishit-dagli/GLOM-TensorFlow.git
# or clone your own fork

cd GLOM-TensorFlow
pip install -e .[dev]

A bit about GLOM

The GLOM architecture is composed of a large number of columns which all use exactly the same weights. Each column is a stack of spatially local autoencoders that learn multiple levels of representation for what is happening in a small image patch. Each autoencoder transforms the embedding at one level into the embedding at an adjacent level using a multilayer bottom-up encoder and a multilayer top-down decoder. These levels correspond to the levels in a part-whole hierarchy.

Interactions among the 3 levels in one column

An example shared by the author was as an example when show a face image, a single column might converge on embedding vectors representing a nostril, a nose, a face, and a person.

At each discrete time and in each column separately, the embedding at a level is updated to be the weighted average of:

  • bottom-up neural net acting on the embedding at the level below at the previous time
  • top-down neural net acting on the embedding at the level above at the previous time
  • embedding vector at the previous time step
  • attention-weighted average of the embeddings at the same level in nearby columns at the previous time

For a static image, the embeddings at a level should settle down over time to produce similar vectors.

A picture of the embeddings at a particular time

Usage

from glomtf import Glom

model = Glom(dim = 512,
             levels = 5,
             image_size = 224,
             patch_size = 14)

img = tf.random.normal([1, 3, 224, 224])
levels = model(img, iters = 12) # (1, 256, 5, 12)
# 1 - batch
# 256 - patches
# 5 - levels
# 12 - dimensions

Use the return_all = True argument to get all the column and level states per iteration. This also gives you access to all the level data across iterations for clustering, from which you can inspect the islands too.

from glomtf import Glom

model = Glom(dim = 512,
             levels = 5,
             image_size = 224,
             patch_size = 14)

img = tf.random.normal([1, 3, 224, 224])
all_levels = model(img, iters = 12, return_all = True) # (13, 1, 256, 5, 12)
# 13 - time

# top level outputs after iteration 6
top_level_output = all_levels[7, :, :, -1] # (1, 256, 512)
# 1 - batch
# 256 - patches
# 512 - dimensions

Want to Contribute 🙋‍♂️ ?

Awesome! If you want to contribute to this project, you're always welcome! See Contributing Guidelines. You can also take a look at open issues for getting more information about current or upcoming tasks.

Want to discuss? 💬

Have any questions, doubts or want to present your opinions, views? You're always welcome. You can start discussions.

Citations

@misc{hinton2021represent,
    title   = {How to represent part-whole hierarchies in a neural network}, 
    author  = {Geoffrey Hinton},
    year    = {2021},
    eprint  = {2102.12627},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}

License

Copyright 2020 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
You might also like...
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Utility tools for the
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

Towards Part-Based Understanding of RGB-D Scans
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into I

TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Comments
  • [ImgBot] Optimize images

    [ImgBot] Optimize images

    opened by imgbot[bot] 0
  • Implement Pairwise Distance

    Implement Pairwise Distance

    Write an algorithm that computes batched the p-norm distance between each pair of two collections of row vectors. We use the euclidean distance metric. For a matrix A [m, d] and a matrix B [n, d] we expect a matrix of pairwise distances here D [m, n]

    Arguments:

    • A: A tf.Tensor object. The first matrix.
    • B: A tf.tensor object. The second matrix.

    Returns:

    • Calculate distance.

    Reference:


    Closes #4

    opened by Rishit-dagli 0
  • Implement Pairwise Distance

    Implement Pairwise Distance

    While trying to implement #2 I noticed there is no TensorFlow op for calculating pairwise distances, so I would also need to create an implementation for that.

    References

    opened by Rishit-dagli 0
  • GroupedFeeedForward Layer

    GroupedFeeedForward Layer

    Write a GroupedFeeedForward layer inherited from the tf.keras.layers.Layer. This layer should be used for the bottom-up and top-down networks changing the number of groups in each case.

    opened by Rishit-dagli 0
Releases(v0.1.1)
Owner
Rishit Dagli
High School,TEDx,2xTED-Ed speaker | International Speaker | Microsoft Student Ambassador | Mentor, @TFUGMumbai | Organize @KotlinMumbai
Rishit Dagli
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
Web mining module for Python, with tools for scraping, natural language processing, machine learning, network analysis and visualization.

Pattern Pattern is a web mining module for Python. It has tools for: Data Mining: web services (Google, Twitter, Wikipedia), web crawler, HTML DOM par

Computational Linguistics Research Group 8.4k Jan 03, 2023
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
Evaluating AlexNet features at various depths

Linear Separability Evaluation This repo provides the scripts to test a learned AlexNet's feature representation performance at the five different con

Yuki M. Asano 32 Dec 30, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

Friederike Metz 7 Apr 23, 2022
Benchmark spaces - Benchmarks of how well different two dimensional spaces work for clustering algorithms

benchmark_spaces Benchmarks of how well different two dimensional spaces work fo

Bram Cohen 6 May 07, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
A testcase generation tool for Persistent Memory Programs.

PMFuzz PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck) If

Systems Research at ShiftLab 14 Jul 24, 2022
TART - A PyTorch implementation for Transition Matrix Representation of Trees with Transposed Convolutions

TART This project is a PyTorch implementation for Transition Matrix Representati

Lee Sael 2 Jan 19, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022