An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

Overview

GLOM TensorFlow Twitter

PyPI Flake8 Lint Upload Python Package Python Version

Binder Open In Colab

GitHub license PEP8 GitHub stars GitHub followers Twitter Follow

This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neural fields, contrastive representation learning, distillation and capsules to be combined. This was suggested by Geoffrey Hinton in his paper "How to represent part-whole hierarchies in a neural network".

Further, Yannic Kilcher's video and Phil Wang's repo was very helpful for me to implement this project.

Installation

Run the following to install:

pip install glom-tf

Developing glom-tf

To install glom-tf, along with tools you need to develop and test, run the following in your virtualenv:

git clone https://github.com/Rishit-dagli/GLOM-TensorFlow.git
# or clone your own fork

cd GLOM-TensorFlow
pip install -e .[dev]

A bit about GLOM

The GLOM architecture is composed of a large number of columns which all use exactly the same weights. Each column is a stack of spatially local autoencoders that learn multiple levels of representation for what is happening in a small image patch. Each autoencoder transforms the embedding at one level into the embedding at an adjacent level using a multilayer bottom-up encoder and a multilayer top-down decoder. These levels correspond to the levels in a part-whole hierarchy.

Interactions among the 3 levels in one column

An example shared by the author was as an example when show a face image, a single column might converge on embedding vectors representing a nostril, a nose, a face, and a person.

At each discrete time and in each column separately, the embedding at a level is updated to be the weighted average of:

  • bottom-up neural net acting on the embedding at the level below at the previous time
  • top-down neural net acting on the embedding at the level above at the previous time
  • embedding vector at the previous time step
  • attention-weighted average of the embeddings at the same level in nearby columns at the previous time

For a static image, the embeddings at a level should settle down over time to produce similar vectors.

A picture of the embeddings at a particular time

Usage

from glomtf import Glom

model = Glom(dim = 512,
             levels = 5,
             image_size = 224,
             patch_size = 14)

img = tf.random.normal([1, 3, 224, 224])
levels = model(img, iters = 12) # (1, 256, 5, 12)
# 1 - batch
# 256 - patches
# 5 - levels
# 12 - dimensions

Use the return_all = True argument to get all the column and level states per iteration. This also gives you access to all the level data across iterations for clustering, from which you can inspect the islands too.

from glomtf import Glom

model = Glom(dim = 512,
             levels = 5,
             image_size = 224,
             patch_size = 14)

img = tf.random.normal([1, 3, 224, 224])
all_levels = model(img, iters = 12, return_all = True) # (13, 1, 256, 5, 12)
# 13 - time

# top level outputs after iteration 6
top_level_output = all_levels[7, :, :, -1] # (1, 256, 512)
# 1 - batch
# 256 - patches
# 512 - dimensions

Want to Contribute ๐Ÿ™‹โ€โ™‚๏ธ ?

Awesome! If you want to contribute to this project, you're always welcome! See Contributing Guidelines. You can also take a look at open issues for getting more information about current or upcoming tasks.

Want to discuss? ๐Ÿ’ฌ

Have any questions, doubts or want to present your opinions, views? You're always welcome. You can start discussions.

Citations

@misc{hinton2021represent,
    title   = {How to represent part-whole hierarchies in a neural network}, 
    author  = {Geoffrey Hinton},
    year    = {2021},
    eprint  = {2102.12627},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}

License

Copyright 2020 Rishit Dagli

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
You might also like...
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images
Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Deep Multi-Magnification Network This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi

The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Utility tools for the
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

Towards Part-Based Understanding of RGB-D Scans
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb โ€“ Molecular Translation challenge

Part of the 9th place solution for the Bristol-Myers Squibb โ€“ Molecular Translation challenge translating images containing chemical structures into I

TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.
TorchIO is a Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Medical image preprocessing and augmentation toolkit for deep learning. Part of the PyTorch Ecosystem.

Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Comments
Releases(v0.1.1)
Owner
Rishit Dagli
High School,TEDx,2xTED-Ed speaker | International Speaker | Microsoft Student Ambassador | Mentor, @TFUGMumbai | Organize @KotlinMumbai
Rishit Dagli
Geometric Sensitivity Decomposition

Geometric Sensitivity Decomposition This repo is the official implementation of A Geometric Perspective towards Neural Calibration via Sensitivity Dec

16 Dec 26, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
Ranking Models in Unlabeled New Environments ๏ผˆiccv21๏ผ‰

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Meshed-Memory Transformer for Image Captioning. CVPR 2020

Mยฒ: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
Contrastive Learning for Compact Single Image Dehazing, CVPR2021

AECR-Net Contrastive Learning for Compact Single Image Dehazing, CVPR2021. Official Pytorch based implementation. Paper arxiv Pytorch Version TODO: mo

glassy 253 Jan 01, 2023
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022