Analysis of Antarctica sequencing samples contaminated with SARS-CoV-2

Overview

Analysis of SARS-CoV-2 reads in sequencing of 2018-2019 Antarctica samples in PRJNA692319

The samples analyzed here are described in this preprint, which is a pre-print by Istvan Csabai and co-workers that describes SARS-CoV-2 reads in samples from Antarctica sequencing in China. I was originally alerted to the pre-print by Carl Zimmer on Dec-23-2021. Istvan Csabai and coworkers subsequently posted a second pre-print that also analyzes the host reads.

Repeating key parts of the analysis

The code in this repo independently repeats some of the analyses.

To run the analysis, build the conda environment in environment.yml and then run the analysis using Snakefile. To do this on the Hutch cluster, using run.bash:

sbatch -c 16 run.bash

The results are placed in the ./results/ subdirectory. Most of the results files are not tracked due to file-size limitations, but the following key files are tracked:

  • results/alignment_counts.csv gives the number of reads aligning to SARS-CoV-2 for each sample. This confirms that three accessions (SRR13441704, SRR13441705, and SRR13441708) have most of the SARS-CoV-2 reads, although a few other samples also have some.
  • results/variant_analysis.csv reports all variants found in the samples relative to Wuhan-Hu-1.
  • results/variant_analysis_to_outgroup.csv reports the variants found in the samples that represent mutations from Wuhan-Hu-1 towards the two closest bat coronavirus relatives, RaTG13 and BANAL-20-52. Note that some of the reads contain three key mutations relative to Wuhan-Hu-1 (C8782T, C18060T, and T28144C) that move the sequence closer to the bat coronavirus relatives. These mutations define one of the two plausible progenitors for all currently known human SARS-CoV-2 sequences (see Kumar et al (2021) and Bloom (2021)).

Archived links after initially hearing about pre-print

I archived the following links on Dec-23-2021 after hearing about the pre-print from Carl Zimmer:

Deletion of some samples from SRA

On Jan-3-2022, I received an e-mail one of the pre-print authors, Istvan Csabai, saying that three of the samples (appearing to be the ones with the most SARS-CoV-2 reads) had been removed from the SRA. He also noted that bioRxiv had refused to publish their pre-print without explanation; the file he attached indicates the submission ID was BIORXIV-2021-472446v1. I confirmed that three of the accessions had indeed been removed from the SRA as shown in the following archived links:

I also e-mailed Richard Sever at bioRxiv to ask why the pre-print was rejected, and explained I had repeated and validated the key findings. Richard Sever said he could not give details about the pre-print review process, but that in the future the authors could appeal if they thought the rejection was unfounded.

Details from Istvan Csabai

On Jan-4-2022, I chatted with Istvan Csabai. He had contacted the authors of the pre-print, and shared their reply to him. The authors had prepped the samples in early 2019, and submitted to Sangon BioTech for sequencing in December, getting the results back in early January.

Second pre-print from Csabai and restoration of deleted files

Istvan Csabai then worked on a second pre-print that analyzed host reads and made various findings, including co-contamination with African green monkey (Vero?) and human DNA. He sent me pre-print drafts on Jan-16-2022 and on Jan-24-2022, and I provided comments on both drafts and agreed to be listed in the Acknowledgments.

On Feb-3-2022, Istvan Csabai told me that the second pre-print had also been rejected from bioRxiv. Because I had previously contacted Richard Sever when I heard the first pre-print was rejected, I suggested Istvan could CC me on an e-mail to Richard Sever appealing the rejection, which he did. Unfortunately, Richard Sever declined the appeal, so instead Istvan posted the pre-print on Resarch Square.

At that point on Feb-3-2022, I also re-checked the three deletion accessions (SRR13441704, SRR13441705, and SRR13441708). To my surprise, all three were now again available by public access. Here are archived links demonstrating that they were again available:

I confirmed that the replaced accessions were identical to the deleted ones.

Inquiry to authors of PRJNA692319

On Feb-8-2022, I e-mailed the Chinese authors of the paper to ask about the sample deletion and restoration. They e-mailed back almost immediately. They confirmed what they had told Istvan: they had sequenced the samples with Sangon Biotech (Shanghai) after extracting the DNA in December 2019 from their samples. The suspect that contamination of the samples happened at Sangon Biotech. They deleted the three most contaminated samples from the Sequence Read Archive. They do not know why the samples were then "un-deleted."

Owner
Jesse Bloom
I research the evolution of viruses and proteins.
Jesse Bloom
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022