Multiwavelets-based operator model

Overview

Multiwavelet model for Operator maps

Image Gaurav Gupta, Xiongye Xiao, and Paul Bogdan
Multiwavelet-based Operator Learning for Differential Equations
In NeurIPS 2021. arXiv:2109.13459

Setup

Requirements

The code package is developed using Python 3.8 and Pytorch 1.8 with cuda 11.0. For running the experiments first install the required packages using 'requirements.txt'

Experiments

Data

Generate the data using the scripts provided in the 'Data' directory. The scripts use Matlab 2018+. A sample generated dataset for KdV is uploaded at KdV data.

For the experiments on Burgers, Darcy, and Navier Stokes, the code package uses the datasets as provided in the following repository by the Authors Zongyi Li et al.

PDE datasets

Scripts

Choose the required model from the models (1-d, 2-d, 2-d time-varying) and pass-in the required polynomial: 'legendre' or 'chebyshev'. Next, choose the desired value of multiwavelets 'k'.

kDV

As an example, a complete pipeline is shown for the kDV equation in the attached kDV.ipynb notebook.

Navier Stokes

The pre-trained models for Navier Stokes equation is provided using the following link:

NS Pre trained

A visual of time-evolution of the estimated outputs of the pre-trained models is available Here.

To test the model, first download the models to the 'ptmodels' directory. Next, For N=1000, T = 50, \nu = 1e-3

python test_NS_MWT_N_1000.py

For N = 10000, T = 30, \nu = 1e-4

python test_NS_MWT_N_10000.py

Note: The NS experiments were done using Pytorch 1.7 cuda 11.0

Citation

If you use this code, or our work, please cite:

@misc{gupta2021multiwavelet,
      title={Multiwavelet-based Operator Learning for Differential Equations}, 
      author={Gaurav Gupta and Xiongye Xiao and Paul Bogdan},
      year={2021},
      eprint={2109.13459},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Gaurav
PhD Candidate at USC Viterbi.
Gaurav
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
The open-source and free to use Python package miseval was developed to establish a standardized medical image segmentation evaluation procedure

miseval: a metric library for Medical Image Segmentation EVALuation The open-source and free to use Python package miseval was developed to establish

59 Dec 10, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Roger Labbe 13k Dec 29, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Hyperparameters tuning and features selection are two common steps in every machine learning pipeline.

shap-hypetune A python package for simultaneous Hyperparameters Tuning and Features Selection for Gradient Boosting Models. Overview Hyperparameters t

Marco Cerliani 422 Jan 08, 2023
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
Python package for missing-data imputation with deep learning

MIDASpy Overview MIDASpy is a Python package for multiply imputing missing data using deep learning methods. The MIDASpy algorithm offers significant

MIDASverse 77 Dec 03, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug ยท Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022