Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

Overview

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations

This repository is the implementation of PointWOLF(To appear).

Sihyeon Kim1*, Sanghyeok Lee1*, Dasol Hwang1, Jaewon Lee1, Seong Jae Hwang2, Hyunwoo J. Kim1†, Point Cloud Augmentation with Weighted Local Transformations (ICCV 2021).
1Korea University 2University of Pittsburgh

PointWOLF_main

Installation

Dependencies

  • CUDA 10.2
  • Python 3.7.1
  • torch 1.7.0
  • packages : sklearn, numpy, h5py, glob

Download

Clone repository

$ git clone https://github.com/mlvlab/PointWOLF.git

Download ModelNet40

Notes : When you run the main.py, ModelNet40 is automatically downloaded at .../PointWOLF/data/.
If you want to download dataset on your ${PATH}, see below.

$ cd ${PATH}
$ wget https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip --no-check-certificate
$ unzip modelnet40_ply_hdf5_2048.zip
$ rm modelnet40_ply_hdf5_2048.zip

Runnig the code

train

  • Run the training without PointWOLF & AugTune:
$ python main.py --exp_name=origin --model=dgcnn --num_points=1024 --k=20 --use_sgd=True
  • Run the training with PointWOLF:
$ python main.py --exp_name=PointWOLF --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --PointWOLF
  • Run the training with PointWOLF & AugTune:
$ python main.py --exp_name=PointWOLF_AugTune --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --PointWOLF --AugTune

eval

  • Run the evaluation with trained model located at ${PATH}:
$ python main.py --exp_name=eval --model=dgcnn --num_points=1024 --k=20 --use_sgd=True --eval=True --model_path=${PATH}

Citation

@InProceedings{Kim_2021_ICCV,
    author    = {Kim, Sihyeon and Lee, Sanghyeok and Hwang, Dasol and Lee, Jaewon and Hwang, Seong Jae and Kim, Hyunwoo J.},
    title     = {Point Cloud Augmentation With Weighted Local Transformations},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {548-557}
}

License

MIT License

Acknowledgement

The structure of this codebase is borrowed from DGCNN.

Owner
MLV Lab (Machine Learning and Vision Lab at Korea University)
MLV Lab (Machine Learning and Vision Lab at Korea University)
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
Predicting a person's gender based on their weight and height

Logistic Regression Advanced Case Study Gender Classification: Predicting a person's gender based on their weight and height 1. Introduction We turn o

1 Feb 01, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
Official implementation for (Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching, AAAI-2021)

Show, Attend and Distill: Knowledge Distillation via Attention-based Feature Matching Official pytorch implementation of "Show, Attend and Distill: Kn

Clova AI Research 80 Dec 16, 2022
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Pytorch Implementation of Residual Vision Transformers(ResViT)

ResViT Official Pytorch Implementation of Residual Vision Transformers(ResViT) which is described in the following paper: Onat Dalmaz and Mahmut Yurt

ICON Lab 41 Dec 08, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Setup and customize deep learning environment in seconds.

Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment supports almost all commonly used deep le

Ming 6.3k Jan 06, 2023
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022