A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

Overview

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

The official pytorch implementation of the paper "Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis", the paper can be found here.

0. Data

The datasets used in the paper can be found at link.

After testing on over 20 datasets with each has less than 100 images, this GAN converges on 80% of them. I still cannot summarize an obvious pattern of the "good properties" for a dataset which this GAN can converge on, please feel free to try with your own datasets.

1. Description

The code is structured as follows:

  • models.py: all the models' structure definition.

  • operation.py: the helper functions and data loading methods during training.

  • train.py: the main entry of the code, execute this file to train the model, the intermediate results and checkpoints will be automatically saved periodically into a folder "train_results".

  • eval.py: generates images from a trained generator into a folder, which can be used to calculate FID score.

  • benchmarking: the functions we used to compute FID are located here, it automatically downloads the pytorch official inception model.

  • lpips: this folder contains the code to compute the LPIPS score, the inception model is also automatically download from official location.

  • scripts: this folder contains many scripts you can use to play around the trained model. Including:

    1. style_mix.py: style-mixing as introduced in the paper;
    2. generate_video.py: generating a continuous video from the interpolation of generated images;
    3. find_nearest_neighbor.py: given a generated image, find the closest real-image from the training set;
    4. train_backtracking_one.py: given a real-image, find the latent vector of this image from a trained Generator.

2. How to run

Place all your training images in a folder, and simply call

python train.py --path /path/to/RGB-image-folder

You can also see all the training options by:

python train.py --help

The code will automatically create a new folder (you have to specify the name of the folder using --name option) to store the trained checkpoints and intermediate synthesis results.

Once finish training, you can generate 100 images (or as many as you want) by:

cd ./train_results/name_of_your_training/
python eval.py --n_sample 100 

3. Pre-trained models

The pre-trained models and the respective code of each model are shared here.

You can also use FastGAN to generate images with a pre-packaged Docker image, hosted on the Replicate registry: https://beta.replicate.ai/odegeasslbc/FastGAN

4. Important notes

  1. The provided code is for research use only.

  2. Different model and training configurations are needed on different datasets. You may have to tune the hyper-parameters to get the best results on your own datasets.

    2.1. The hyper-parameters includes: the augmentation options, the model depth (how many layers), the model width (channel numbers of each layer). To change these, you have to change the code in models.py and train.py directly.

    2.2. Please check the code in the shared pre-trained models on how each of them are configured differently on different datasets. Especially, compare the models.py for ffhq and art datasets, you will get an idea on what chages could be made on different datasets.

5. Other notes

  1. The provided scripts are not well organized, contributions are welcomed to clean them.
  2. An third-party implementation of this paper can be found here, where some other techniques are included. I suggest you try both implementation if you find one of them does not work.
Owner
Bingchen Liu
Bingchen Liu
Galileo library for large scale graph training by JD

近年来,图计算在搜索、推荐和风控等场景中获得显著的效果,但也面临超大规模异构图训练,与现有的深度学习框架Tensorflow和PyTorch结合等难题。 Galileo(伽利略)是一个图深度学习框架,具备超大规模、易使用、易扩展、高性能、双后端等优点,旨在解决超大规模图算法在工业级场景的落地难题,提

JD Galileo Team 128 Nov 29, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
Implementation of Google Brain's WaveGrad high-fidelity vocoder

WaveGrad Implementation (PyTorch) of Google Brain's high-fidelity WaveGrad vocoder (paper). First implementation on GitHub with high-quality generatio

Ivan Vovk 363 Dec 27, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Deep Inertial Prediction (DIPr)

Deep Inertial Prediction For more information and context related to this repo, please refer to our website. Getting Started (non Docker) Note: you wi

Arcturus Industries 12 Nov 11, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
Prompts - Read a textfile of prompts and import into anki via ankiconnect

prompts read a textfile of prompts and import into anki via ankiconnect Usage In

Alexander Cobleigh 2 Jul 28, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
SegNet model implemented using keras framework

keras-segnet Implementation of SegNet-like architecture using keras. Current version doesn't support index transferring proposed in SegNet article, so

185 Aug 30, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021