The 2nd place solution of 2021 google landmark retrieval on kaggle.

Overview

Google_Landmark_Retrieval_2021_2nd_Place_Solution

The 2nd place solution of 2021 google landmark retrieval on kaggle.

Environment

We use cuda 11.1/python 3.7/torch 1.9.1/torchvision 0.8.1 for training and testing.

Download imagenet pretrained model ResNeXt101ibn and SEResNet101ibn from IBN-Net. ResNest101 and ResNeSt269 can be found in ResNest.

Prepare data

  1. Download GLDv2 full version from the official site.

  2. Run python tools/generate_gld_list.py. This will generate clean, c2x, trainfull and all data for different stage of training.

  3. Validation annotation comes from all 1129 images in GLDv2. We expand the competition index set to index_expand. Each query could find all its GTs in the expanded index set and the validation could be more accurate.

Train

We use 8 GPU (32GB/16GB) for training. The evaluation metric in landmark retrieval is different from person re-identification. Due to the validation scale, we skip the validation stage during training and just use the model from last epoch for evaluation.

Fast Train Script

To make quick experiments, we provide scripts for R50_256 trained for clean subset. This setting trains very fast and is helpful for debug.

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/R50_256.yml

Whole Train Pipeline

The whole training pipeline for SER101ibn backbone is listed below. Other backbones and input size can be modified accordingly.

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_384_finetune.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_finetune.yml
python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 55555 --max_restarts 0 train.py --config_file configs/GLDv2/SER101ibn_512_all.yml

Inference(notebooks)

  • With four models trained, cd to submission/code/ and modify settings in landmark_retrieval.py properly.

  • Then run eval_retrieval.sh to get submission file and evaluate on validation set offline.

General Settings

REID_EXTRACT_FLAG: Skip feature extraction when using offline code.
FEAT_DIR: Save cached features.
IMAGE_DIR: competition image dir. We make a soft link for competition data at submission/input/landmark-retrieval-2021/
RAW_IMAGE_DIR: origin GLDv2 dir
MODEL_DIR: the latest models for submission
META_DIR: saves meta files for rerank purpose
LOCAL_MATCHING and KR_FLAG disabled for our submission.

Fast Inference Script

Use R50_256 model trained from clean subset correspongding to the fast train script. Set CATEGORY_RERANK and REF_SET_EXTRACT to False. You will get about mAP=32.84% for the validation set.

Whole Inference Pipeline

  • Copy cache_all_list.pkl, cache_index_train_list.pkl and cache_full_list.pkl from cache to submission/input/meta-data-final

  • Set REF_SET_EXTRACT to True to extract features for all images of GLDv2. This will save about 4.9 million 512 dim features for each model in submission/input/meta-data-final.

  • Set REF_SET_EXTRACT to False and CATEGORY_RERANK to before_merge. This will load the precomputed features and run the proposed Landmark-Country aware rerank.

  • The notebooks on kaggle is exactly the same file as in base_landmark.py and landmark_retrieval.py. We also upload the same notebooks as in kaggle in kaggle.ipynb.

Kaggle and ICCV workshops

  • The challenge is held on kaggle and the leaderboard can be found here. We rank 2nd(2/263) in this challenge.

  • Kaggle Discussion post link here

  • ICCV workshop slides coming soon.

Thanks

The code is motivated by AICITY2021_Track2_DMT, 2020_1st_recognition_solution, 2020_2nd_recognition_solution, 2020_1st_retrieval_solution.

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{zhang2021landmark,
 title={2nd Place Solution to Google Landmark Retrieval 2021},
 author={Zhang, Yuqi and Xu, Xianzhe and Chen, Weihua and Wang, Yaohua and Zhang, Fangyi},
 year={2021}
}
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
PED: DETR for Crowd Pedestrian Detection

PED: DETR for Crowd Pedestrian Detection Code for PED: DETR For (Crowd) Pedestrian Detection Paper PED: DETR for Crowd Pedestrian Detection Installati

36 Sep 13, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
Learning Correspondence from the Cycle-consistency of Time (CVPR 2019)

TimeCycle Code for Learning Correspondence from the Cycle-consistency of Time (CVPR 2019, Oral). The code is developed based on the PyTorch framework,

Xiaolong Wang 706 Nov 29, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
PaddlePaddle GAN library, including lots of interesting applications like First-Order motion transfer, wav2lip, picture repair, image editing, photo2cartoon, image style transfer, and so on.

English | 简体中文 PaddleGAN PaddleGAN provides developers with high-performance implementation of classic and SOTA Generative Adversarial Networks, and s

6.4k Jan 09, 2023
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
Unit-Convertor - Unit Convertor Built With Python

Python Unit Converter This project can convert Weigth,length and ... units for y

Mahdis Esmaeelian 1 May 31, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX.

FedJAX: Federated learning with JAX What is FedJAX? FedJAX is a library for developing custom Federated Learning (FL) algorithms in JAX. FedJAX priori

Google 208 Dec 14, 2022