Music source separation is a task to separate audio recordings into individual sources

Overview

Music Source Separation

Music source separation is a task to separate audio recordings into individual sources. This repository is an PyTorch implmementation of music source separation. Users can separate their favorite songs into different sources by installing this repository. In addition, users can train their own music source separation systems using this repository. This repository also includes speech enhancement, instruments separation, etc.

Demos

Vocals and accompaniment separation: https://www.youtube.com/watch?v=WH4m5HYzHsg

Separation

Users can easily separate their favorite audio recordings into vocals and accompaniment using the pretrained checkpoints.

Method 1. Separate by installing the package

python3 setup.py install
python3 separate_scripts/separate.py 
    --audio_path="./resources/vocals_accompaniment_10s.mp3" 
    --source_type="accompaniment"

Method 2. Separate by using the source code

1. Install dependencies

pip install -r requirements.txt

2. Download checkpoints

./separate_scripts/download_checkpoints.sh

3. Separate vocals and accompaniment

./separate_scripts/separate_vocals.sh "resources/vocals_accompaniment_10s.mp3" "sep_vocals.mp3"
./separate_scripts/separate_accompaniment.sh "resources/vocals_accompaniment_10s.mp3" "sep_accompaniment.mp3"

Train a music source separation system from scratch

1. Download dataset

We use the MUSDB18 dataset to train music source separation systems. The trained system can be used to separate vocals, accompaniments, bass, and other sources. Execute the following script to download and decompress the MUSDB18 dataset:

./scripts/0_download_datasets/musdb18.sh

The dataset looks like:

./datasets/musdb18
├── train (100 files)
│   ├── 'A Classic Education - NightOwl.stem.mp4'
│   └── ...
├── test (50 files)
│   ├── 'Al James - Schoolboy Facination.stem.mp4'
│   └── ...
└── README.md

2. Pack audio files into hdf5 files

We pack audio waveforms into hdf5 files to speed up training.

."/scripts/1_pack_audios_to_hdf5s/musdb18/sr=44100,chn=2.sh"

3. Create indexes for training

./scripts/2_create_indexes/musdb18/create_indexes.sh

3. Create evaluation audios

./scripts/3_create_evaluation_audios/musdb18/create_evaluation_audios.sh

4. Train & evaluate & save checkpoints

./scripts/4_train/musdb18/train.sh

5. Inference

./scripts/5_inference/musdb18/inference.sh

##

Results

Model Size (MB) SDR (dB) process 1s time (GPU Tesla V100) process 1s time (CPU Core i7)
ResUNet143 vocals 461 8.9 0.036 2.513
ResUNet143 acc. 461 16.8 0.036 2.513
ResUNet143 Subband vocals 414 8.8 0.012 0.614
ResUNet143 Subband acc. 414 16.4 0.012 0.614

Reference

[1] Qiuqiang Kong, Yin Cao, Haohe Liu, Keunwoo Choi, Yuxuan Wang, Decoupling Magnitude and Phase Estimation with Deep ResUNet for Music Source Separation, International Society for Music Information Retrieval (ISMIR), 2021.

@inproceedings{kong2021decoupling,
  title={Decoupling Magnitude and Phase Estimation with Deep ResUNet for Music Source Separation.},
  author={Kong, Qiuqiang and Cao, Yin and Liu, Haohe and Choi, Keunwoo and Wang, Yuxuan },
  booktitle={ISMIR},
  year={2021},
  organization={Citeseer}
}

FAQ

On Mac OSX, if users met "ModuleNotFoundError: No module named ..." error, then execute the following commands:

PYTHONPATH="./"
export PYTHONPATH
Owner
Bytedance Inc.
Bytedance Inc.
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Pytorch implementation of the unsupervised object discovery method LOST.

LOST Pytorch implementation of the unsupervised object discovery method LOST. More details can be found in the paper: Localizing Objects with Self-Sup

Valeo.ai 189 Dec 25, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
PyTorch implementation of Asymmetric Siamese (https://arxiv.org/abs/2204.00613)

Asym-Siam: On the Importance of Asymmetry for Siamese Representation Learning This is a PyTorch implementation of the Asym-Siam paper, CVPR 2022: @inp

Meta Research 89 Dec 18, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
discovering subdomains, hidden paths, extracting unique links

python-website-crawler discovering subdomains, hidden paths, extracting unique links pip install -r requirements.txt discover subdomain: You can give

merve 4 Sep 05, 2022
Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash through feeding it pictures or videos.

Trash-Sorter-Extraordinaire Trash Sorter Extraordinaire is a software which efficiently detects the different types of waste in a pile of random trash

Rameen Mahmood 1 Nov 07, 2021
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing described in paper Discontinuous Grammar as a Foreign Language.

Discontinuous Grammar as a Foreign Language This repository includes the code of the sequence-to-sequence model for discontinuous constituent parsing

Daniel Fernández-González 2 Apr 07, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022