某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

Overview

elective-dataset-2021spring

某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。

数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。

Baseline模型和上下游相关工具采用 MIT License 进行许可。

数据集

dataset/ 目录包含了收集到的所有带标签验证码数据,共29338张。

  • dataset/manual: 人工标注的带标签验证码GIF数据集,标签经过了elective验证因此都是正确的。共5471张。
  • dataset/auto-corrdataset/auto-fail-tagged: 模型自动标注的带标签验证码GIF数据集,其中 auto-corr 是识别正确(通过了elective验证)的部分,auto-fail-tagged 是识别错误然后手工重新标注的部分(此部分不保证正确性)。共22931(正确)+936(错误)张。

使用时请注意,由于 GitHub 的限制

  • auto-fail-tagged 在仓库中存储为7-zip压缩包;
  • manual 在仓库中存储为7个不超过48MB的7-zip分卷;
  • auto-corr 没有存储在仓库中,而是压缩为14个不超过95MB的7-zip分卷放在了 Release页面

Baseline 模型

baseline/ 目录包含一个简易的验证码识别模型。

此模型进行了提取关键帧、基于OpenCV的图像增强以及基于CNN的分类器等一系列工作以完成识别。

将训练集和测试集图片分别放入 set-trainset-test 后运行 train.py 进行训练,用一块TITAN RTX训练需要几分钟的时间。

用大约一万张图片训练好的 checkpoints/model_29.pth 能达到 98.4% 的整体精确度。

predict_bootstrap.py 在elective系统上测试当前模型,将检验正确的带标签图片放入 bootstrap_img_succ 目录,错误的图片放入 bootstrap_img_fail 目录。

上下游相关工具

  • crawl/: 验证码众包标注平台,可以从elective爬取验证码、辅助多名用户同时标注、检验正确性后将正确的数据放入 img_correct 目录。检验错误的验证码将被抛弃,这是初期的一个设计失误,这样将使得数据集的分布与真实分布有偏差。
  • retag/: 手工标注模型识别错误数据的工具。从 bootstrap_img_fail 读取标注错误图片,人工输入正确标注后移动到 bootstrap_img_fail_tagged
  • serve/: 提供在线验证码识别服务的 HTTP RPC 服务器。POST /fire 并传入base64编码的验证码GIF来进行识别。

数据处理过程

首先,我们设立了众包标注平台,多名志愿者累计标注了超过五千张验证码。

有了这些数据后,我们利用OpenCV进行了简单的图片增强、二值化、分字、裁切,然后随手糊了一个简单的CNN网络来识别。在随意调参之后,模型的整体(四个字)准确率接近95%。

然后,我们利用此模型来对数据集进行自举:爬取验证码后调用模型识别然后检验正确性,其中识别错误的部分手工标注。这样我们可以轻易地扩大数据集的规模,从而提升模型效果。

经过了更多的随意调参,模型的整体准确率可以达到98.4%。因为继续提升准确率意义不大,就没有继续优化。考虑到 PyTorch 安装比较麻烦,模型不易于部署到用户的设备上,我们实现了一个 HTTP API 可以用于云端识别。

相关工作

by Elector Quartet (按字典序的倒序 @xmcp, @SpiritedAwayCN, @Rabbit, @gzz)

You might also like...
Owner
xmcp
叶氏筛法第 NaN 代传人
xmcp
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Implementation of ConvMixer for "Patches Are All You Need? 🤷"

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?" by Asher

CMU Locus Lab 934 Jan 08, 2023
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL) This repository contains all source code used to generate the results in the article "

Charlotte Loh 3 Jul 23, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023