Principled Detection of Out-of-Distribution Examples in Neural Networks

Overview

ODIN: Out-of-Distribution Detector for Neural Networks

This is a PyTorch implementation for detecting out-of-distribution examples in neural networks. The method is described in the paper Principled Detection of Out-of-Distribution Examples in Neural Networks by S. Liang, Yixuan Li and R. Srikant. The method reduces the false positive rate from the baseline 34.7% to 4.3% on the DenseNet (applied to CIFAR-10) when the true positive rate is 95%.

Experimental Results

We used two neural network architectures, DenseNet-BC and Wide ResNet. The PyTorch implementation of DenseNet-BC is provided by Andreas Veit and Brandon Amos. The PyTorch implementation of Wide ResNet is provided by Sergey Zagoruyko. The experimental results are shown as follows. The definition of each metric can be found in the paper. performance

Pre-trained Models

We provide four pre-trained neural networks: (1) two DenseNet-BC networks trained on CIFAR-10 and CIFAR-100 respectively; (2) two Wide ResNet networks trained on CIFAR-10 and CIFAR-100 respectively. The test error rates are given by:

Architecture CIFAR-10 CIFAR-100
DenseNet-BC 4.81 22.37
Wide ResNet 3.71 19.86

Running the code

Dependencies

  • CUDA 8.0

  • PyTorch

  • Anaconda2 or 3

  • At least three GPU

    Note: Reproducing results of DenseNet-BC only requires one GPU, but reproducing results of Wide ResNet requires three GPUs. Single GPU version for Wide ResNet will be released soon in the future.

Downloading Out-of-Distribtion Datasets

We provide download links of five out-of-distributin datasets:

Here is an example code of downloading Tiny-ImageNet (crop) dataset. In the root directory, run

mkdir data
cd data
wget https://www.dropbox.com/s/avgm2u562itwpkl/Imagenet.tar.gz
tar -xvzf Imagenet.tar.gz
cd ..

Downloading Neural Network Models

We provide download links of four pre-trained models.

Here is an example code of downloading DenseNet-BC trained on CIFAR-10. In the root directory, run

mkdir models
cd models
wget https://www.dropbox.com/s/wr4kjintq1tmorr/densenet10.pth.tar.gz
tar -xvzf densenet10.pth.tar.gz
cd ..

Running

Here is an example code reproducing the results of DenseNet-BC trained on CIFAR-10 where TinyImageNet (crop) is the out-of-distribution dataset. The temperature is set as 1000, and perturbation magnitude is set as 0.0014. In the root directory, run

cd code
# model: DenseNet-BC, in-distribution: CIFAR-10, out-distribution: TinyImageNet (crop)
# magnitude: 0.0014, temperature 1000, gpu: 0
python main.py --nn densenet10 --out_dataset Imagenet --magnitude 0.0014 --temperature 1000 --gpu 0

Note: Please choose arguments according to the following.

args

  • args.nn: the arguments of neural networks are shown as follows

    Nerual Network Models args.nn
    DenseNet-BC trained on CIFAR-10 densenet10
    DenseNet-BC trained on CIFAR-100 densenet100
  • args.out_dataset: the arguments of out-of-distribution datasets are shown as follows

    Out-of-Distribution Datasets args.out_dataset
    Tiny-ImageNet (crop) Imagenet
    Tiny-ImageNet (resize) Imagenet_resize
    LSUN (crop) LSUN
    LSUN (resize) LSUN_resize
    iSUN iSUN
    Uniform random noise Uniform
    Gaussian random noise Gaussian
  • args.magnitude: the optimal noise magnitude can be found below. In practice, the optimal choices of noise magnitude are model-specific and need to be tuned accordingly.

    Out-of-Distribution Datasets densenet10 densenet100 wideresnet10 wideresnet100
    Tiny-ImageNet (crop) 0.0014 0.0014 0.0005 0.0028
    Tiny-ImageNet (resize) 0.0014 0.0028 0.0011 0.0028
    LSUN (crop) 0 0.0028 0 0.0048
    LSUN (resize) 0.0014 0.0028 0.0006 0.002
    iSUN 0.0014 0.0028 0.0008 0.0028
    Uniform random noise 0.0014 0.0028 0.0014 0.0028
    Gaussian random noise 0.0014 0.0028 0.0014 0.0028
  • args.temperature: temperature is set to 1000 in all cases.

  • args.gpu: make sure you use the following gpu when running the code:

    Neural Network Models args.gpu
    densenet10 0
    densenet100 0
    wideresnet10 1
    wideresnet100 2

Outputs

Here is an example of output.

Neural network architecture:          DenseNet-BC-100
In-distribution dataset:                     CIFAR-10
Out-of-distribution dataset:     Tiny-ImageNet (crop)

                          Baseline         Our Method
FPR at TPR 95%:              34.8%               4.3% 
Detection error:              9.9%               4.6%
AUROC:                       95.3%              99.1%
AUPR In:                     96.4%              99.2%
AUPR Out:                    93.8%              99.1%
DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021)

DeepLM DeepLM: Large-scale Nonlinear Least Squares on Deep Learning Frameworks using Stochastic Domain Decomposition (CVPR 2021) Run Please install th

Jingwei Huang 130 Dec 02, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
AntiFuzz: Impeding Fuzzing Audits of Binary Executables

AntiFuzz: Impeding Fuzzing Audits of Binary Executables Get the paper here: https://www.usenix.org/system/files/sec19-guler.pdf Usage: The python scri

Chair for Sys­tems Se­cu­ri­ty 88 Dec 21, 2022
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022