Code for paper "ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation"

Related tags

Deep LearningASAP-Net
Overview

ASAP-Net

This project implements ASAP-Net of paper ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation (BMVC2020).

Semantic segmentation result on SemanticKITTI

Overview

We improve spatio-temporal point cloud feature learning with a flexible module called ASAP module considering both attention and structure information across frames, which can be combined with different backbones. Incorporating our module into backbones brings semantic segmentation performance improvements on both Synthia and SemanticKITTI datasets (+3.4 to +15.2 mIoU points with different backbones).

Installation

The Synthia experiments is implemented with TensorFlow and the SemanticKITTI experiments is implemented with PyTorch. We tested the codes under TensorFlow 1.13.1 GPU version, PyTorch 1.1.0, CUDA 10.0, g++ 5.4.0 and Python 3.6.9 on Ubuntu 16.04.12 with TITAN RTX GPU. For SemanticKITTI experiments, you should have a GPU memory of at least 16GB.

Compile TF Operators for Synthia Experiments

We use the implementation in xingyul/meteornet. Please follow the instructions below.

The TF operators are included under Synthia_experiments/tf_ops, you need to compile them first by make under each ops subfolder (check Makefile) or directly use the following commands:

cd Synthia_experiments
sh command_make.sh

Please update arch in the Makefiles for different CUDA Compute Capability that suits your GPU if necessary.

Compile Torch Operators for SemanticKITTI Experiments

We use the PoinNet++ implementation in sshaoshuai/Pointnet2.PyTorch. Use the commands below to build Torch operators.

cd SemanticKITTI_experiments/ASAP-Net_PointNet2/pointnet2
python setup.py install

Experiments on Synthia

The codes for experiments on Synthia is in Synthia_experiments/semantic_seg_synthia. Please refer to Synthia_experiments/semantic_seg_synthia/README.md for more information on data preprocessing and running instructions.

Experiments on SemanticKITTI

The SemanticKITTI_experiments/ImageSet2 folder contains dataset split information. Please put it under your semanticKITTI dataset like Path to semanticKITTI dataset/dataset/sequences.

PointNet++ as Backbone

The codes for framework with PointNet++ as Backbone is in SemanticKITTI_experiments/ASAP-Net_PointNet2. Please refer to SemanticKITTI_experiments/ASAP-Net_PointNet2/README.md for more information on running instructions.

SqueezeSegV2 as Backbone

The codes for framework with SqueezeSegV2 as Backbone is in SemanticKITTI_experiments/ASAP-Net_SqueezeSegV2. Please refer to SemanticKITTI_experiments/ASAP-Net_SqueezeSegV2/README.md for more information on running instructions.

Acknowledgements

Special thanks for open source codes including xingyul/meteornet, sshaoshuai/Pointnet2.PyTorch and PRBonn/lidar-bonnetal.

Citation

Please cite these papers in your publications if it helps your research:

@article{caoasap,
  title={ASAP-Net: Attention and Structure Aware Point Cloud Sequence Segmentation},
  author={Cao, Hanwen and Lu, Yongyi and Lu, Cewu and Pang, Bo and Liu, Gongshen and Yuille, Alan}
  booktitle={British Machine Vision Conference (BMVC)},
  year={2020}
}
Owner
Hanwen Cao
Ph.D. candidate at University of California, San Diego (UCSD)
Hanwen Cao
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Some toy examples of score matching algorithms written in PyTorch

toy_gradlogp This repo implements some toy examples of the following score matching algorithms in PyTorch: ssm-vr: sliced score matching with variance

Ending Hsiao 21 Dec 26, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
[ICML 2021] "Graph Contrastive Learning Automated" by Yuning You, Tianlong Chen, Yang Shen, Zhangyang Wang

Graph Contrastive Learning Automated PyTorch implementation for Graph Contrastive Learning Automated [talk] [poster] [appendix] Yuning You, Tianlong C

Shen Lab at Texas A&M University 80 Nov 23, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
PyTorch implementation of SwAV (Swapping Assignments between Views)

Unsupervised Learning of Visual Features by Contrasting Cluster Assignments This code provides a PyTorch implementation and pretrained models for SwAV

Meta Research 1.7k Jan 04, 2023
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ἀνατομή is a PyTorch library to analyze representation of neural networks

Ryuichiro Hataya 50 Dec 05, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022