Unified MultiWOZ evaluation scripts for the context-to-response task.

Overview

MultiWOZ Context-to-Response Evaluation

Standardized and easy to use Inform, Success, BLEU

~ See the paper ~

 


Easy-to-use scripts for standardized evaluation of response generation on the MultiWOZ benchmark. This repository contains an implementation of the MultiWOZ database with fuzzy matching, functions for normalization of slot names and values, and a careful implementation of the BLEU score and Inform & Succes rates.

🚀 Usage

Install the repository:

pip install git+https://github.com/Tomiinek/[email protected]

Use it directly from your code. Instantiate an evaluator and then call the evaluate method with dictionary of your predictions with a specific format (described later). Set bleu to evaluate the BLEU score, success to get the Success & Inform rate, and use richness for getting lexical richness metrics such as the number of unique unigrams, trigrams, token entropy, bigram conditional entropy, corpus MSTTR-50, and average turn length. Pseudo-code:

from mwzeval.metrics import Evaluator
...

e = Evaluator(bleu=True, success=False, richness=False)
my_predictions = {}
for item in data:
    my_predictions[item.dialog_id] = model.predict(item)
    ...
    
results = e.evaluate(my_predictions)
print(f"Epoch {epoch} BLEU: {results}")

Alternative usage:

git clone https://github.com/Tomiinek/MultiWOZ_Evaluation.git && cd MultiWOZ_Evaluation
pip install -r requirements.txt

And evaluate you predictions from the input file:

python evaluate.py [--bleu] [--success] [--richness] --input INPUT.json [--output OUTPUT.json]

Set the options --bleu, --success, and --richness as you wish.

Input format:

{
    "xxx0000" : [
        {
            "response": "Your generated delexicalized response.",
            "state": {
                "restaurant" : {
                    "food" : "eatable"
                }, ...
            }, 
            "active_domains": ["restaurant"]
        }, ...
    ], ...
}

The input to the evaluator should be a dictionary (or a .json file) with keys matching dialogue ids in the xxx0000 format (e.g. sng0073 instead of SNG0073.json), and values containing a list of turns. Each turn is a dictionary with keys:

  • response – Your generated delexicalized response. You can use either the slot names with domain names, e.g. restaurant_food, or the domain adaptive delexicalization scheme, e.g. food.

  • stateOptional, the predicted dialog state. If not present (for example in the case of policy optimization models), the ground truth dialog state from MultiWOZ 2.2 is used during the Inform & Success computation. Slot names and values are normalized prior the usage.

  • active_domainsOptional, list of active domains for the corresponding turn. If not present, the active domains are estimated from changes in the dialog state during the Inform & Success rate computation. If your model predicts the domain for each turn, place them here. If you use domains in slot names, run the following command to extract the active domains from slot names automatically:

    python add_slot_domains.py [-h] -i INPUT.json -o OUTPUT.json

See the predictions folder with examples.

Output format:

{
    "bleu" : {'damd': … , 'uniconv': … , 'hdsa': … , 'lava': … , 'augpt': … , 'mwz22': … },
    "success" : {
        "inform"  : {'attraction': … , 'hotel': … , 'restaurant': … , 'taxi': … , 'total': … , 'train': … },
        "success" : {'attraction': … , 'hotel': … , 'restaurant': … , 'taxi': … , 'total': … , 'train': … },
    },
    "richness" : {
        'entropy': … , 'cond_entropy': … , 'avg_lengths': … , 'msttr': … , 
        'num_unigrams': … , 'num_bigrams': … , 'num_trigrams': … 
    }
}

The evaluation script outputs a dictionary with keys bleu, success, and richness corresponding to BLEU, Inform & Success rates, and lexical richness metrics, respectively. Their values can be None if not evaluated, otherwise:

  • BLEU results contain multiple scores corresponding to different delexicalization styles and refernces. Currently included references are DAMD, HDSA, AuGPT, LAVA, UniConv, and MultiWOZ 2.2 whitch we consider to be the canonical one that should be reported in the future.
  • Inform & Succes rates are reported for each domain (i.e. attraction, restaurant, hotel, taxi, and train in case of the test set) separately and in total.
  • Lexical richness contains the number of distinct uni-, bi-, and tri-grams, average number of tokens in generated responses, token entropy, conditional bigram entropy, and MSTTR-50 calculated on concatenated responses.

Secret feature

You can use this code even for evaluation of dialogue state tracking (DST) on MultiWOZ 2.2. Set dst=True during initialization of the Evaluator to get joint state accuracy, slot precision, recall, and F1. Note that the resulting numbers are very different from the DST results in the original MultiWOZ evaluation. This is because we use slot name and value normalization, and careful fuzzy slot value matching.

🏆 Results

Please see the orginal MultiWOZ repository for the benchmark results.

👏 Contributing

  • If you would like to add your results, modify the particular table in the original reposiotry via a pull request, add the file with predictions into the predictions folder in this repository, and create another pull request here.
  • If you need to update the slot name mapping because of your different delexicalization style, feel free to make the changes, and create a pull request.
  • If you would like to improve normalization of slot values, add your new rules, and create a pull request.

💭 Citation

@inproceedings{nekvinda-dusek-2021-shades,
    title = "Shades of {BLEU}, Flavours of Success: The Case of {M}ulti{WOZ}",
    author = "Nekvinda, Tom{\'a}{\v{s}} and Du{\v{s}}ek, Ond{\v{r}}ej",
    booktitle = "Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.gem-1.4",
    doi = "10.18653/v1/2021.gem-1.4",
    pages = "34--46"
}

Owner
Tomáš Nekvinda
Wisdom giver, bacon & eggs master, ant lover
Tomáš Nekvinda
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 865 Nov 17, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge.

Bottom-Up and Top-Down Attention for Visual Question Answering An efficient PyTorch implementation of the winning entry of the 2017 VQA Challenge. The

Hengyuan Hu 731 Jan 03, 2023
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
This repository provides the code for MedViLL(Medical Vision Language Learner).

MedViLL This repository provides the code for MedViLL(Medical Vision Language Learner). Our proposed architecture MedViLL is a single BERT-based model

SuperSuperMoon 39 Jan 05, 2023