Unified MultiWOZ evaluation scripts for the context-to-response task.

Overview

MultiWOZ Context-to-Response Evaluation

Standardized and easy to use Inform, Success, BLEU

~ See the paper ~

 


Easy-to-use scripts for standardized evaluation of response generation on the MultiWOZ benchmark. This repository contains an implementation of the MultiWOZ database with fuzzy matching, functions for normalization of slot names and values, and a careful implementation of the BLEU score and Inform & Succes rates.

🚀 Usage

Install the repository:

pip install git+https://github.com/Tomiinek/[email protected]

Use it directly from your code. Instantiate an evaluator and then call the evaluate method with dictionary of your predictions with a specific format (described later). Set bleu to evaluate the BLEU score, success to get the Success & Inform rate, and use richness for getting lexical richness metrics such as the number of unique unigrams, trigrams, token entropy, bigram conditional entropy, corpus MSTTR-50, and average turn length. Pseudo-code:

from mwzeval.metrics import Evaluator
...

e = Evaluator(bleu=True, success=False, richness=False)
my_predictions = {}
for item in data:
    my_predictions[item.dialog_id] = model.predict(item)
    ...
    
results = e.evaluate(my_predictions)
print(f"Epoch {epoch} BLEU: {results}")

Alternative usage:

git clone https://github.com/Tomiinek/MultiWOZ_Evaluation.git && cd MultiWOZ_Evaluation
pip install -r requirements.txt

And evaluate you predictions from the input file:

python evaluate.py [--bleu] [--success] [--richness] --input INPUT.json [--output OUTPUT.json]

Set the options --bleu, --success, and --richness as you wish.

Input format:

{
    "xxx0000" : [
        {
            "response": "Your generated delexicalized response.",
            "state": {
                "restaurant" : {
                    "food" : "eatable"
                }, ...
            }, 
            "active_domains": ["restaurant"]
        }, ...
    ], ...
}

The input to the evaluator should be a dictionary (or a .json file) with keys matching dialogue ids in the xxx0000 format (e.g. sng0073 instead of SNG0073.json), and values containing a list of turns. Each turn is a dictionary with keys:

  • response – Your generated delexicalized response. You can use either the slot names with domain names, e.g. restaurant_food, or the domain adaptive delexicalization scheme, e.g. food.

  • stateOptional, the predicted dialog state. If not present (for example in the case of policy optimization models), the ground truth dialog state from MultiWOZ 2.2 is used during the Inform & Success computation. Slot names and values are normalized prior the usage.

  • active_domainsOptional, list of active domains for the corresponding turn. If not present, the active domains are estimated from changes in the dialog state during the Inform & Success rate computation. If your model predicts the domain for each turn, place them here. If you use domains in slot names, run the following command to extract the active domains from slot names automatically:

    python add_slot_domains.py [-h] -i INPUT.json -o OUTPUT.json

See the predictions folder with examples.

Output format:

{
    "bleu" : {'damd': … , 'uniconv': … , 'hdsa': … , 'lava': … , 'augpt': … , 'mwz22': … },
    "success" : {
        "inform"  : {'attraction': … , 'hotel': … , 'restaurant': … , 'taxi': … , 'total': … , 'train': … },
        "success" : {'attraction': … , 'hotel': … , 'restaurant': … , 'taxi': … , 'total': … , 'train': … },
    },
    "richness" : {
        'entropy': … , 'cond_entropy': … , 'avg_lengths': … , 'msttr': … , 
        'num_unigrams': … , 'num_bigrams': … , 'num_trigrams': … 
    }
}

The evaluation script outputs a dictionary with keys bleu, success, and richness corresponding to BLEU, Inform & Success rates, and lexical richness metrics, respectively. Their values can be None if not evaluated, otherwise:

  • BLEU results contain multiple scores corresponding to different delexicalization styles and refernces. Currently included references are DAMD, HDSA, AuGPT, LAVA, UniConv, and MultiWOZ 2.2 whitch we consider to be the canonical one that should be reported in the future.
  • Inform & Succes rates are reported for each domain (i.e. attraction, restaurant, hotel, taxi, and train in case of the test set) separately and in total.
  • Lexical richness contains the number of distinct uni-, bi-, and tri-grams, average number of tokens in generated responses, token entropy, conditional bigram entropy, and MSTTR-50 calculated on concatenated responses.

Secret feature

You can use this code even for evaluation of dialogue state tracking (DST) on MultiWOZ 2.2. Set dst=True during initialization of the Evaluator to get joint state accuracy, slot precision, recall, and F1. Note that the resulting numbers are very different from the DST results in the original MultiWOZ evaluation. This is because we use slot name and value normalization, and careful fuzzy slot value matching.

🏆 Results

Please see the orginal MultiWOZ repository for the benchmark results.

👏 Contributing

  • If you would like to add your results, modify the particular table in the original reposiotry via a pull request, add the file with predictions into the predictions folder in this repository, and create another pull request here.
  • If you need to update the slot name mapping because of your different delexicalization style, feel free to make the changes, and create a pull request.
  • If you would like to improve normalization of slot values, add your new rules, and create a pull request.

💭 Citation

@inproceedings{nekvinda-dusek-2021-shades,
    title = "Shades of {BLEU}, Flavours of Success: The Case of {M}ulti{WOZ}",
    author = "Nekvinda, Tom{\'a}{\v{s}} and Du{\v{s}}ek, Ond{\v{r}}ej",
    booktitle = "Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.gem-1.4",
    doi = "10.18653/v1/2021.gem-1.4",
    pages = "34--46"
}

Owner
Tomáš Nekvinda
Wisdom giver, bacon & eggs master, ant lover
Tomáš Nekvinda
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Pytorch implementation of "Geometrically Adaptive Dictionary Attack on Face Recognition" (WACV 2022)

Geometrically Adaptive Dictionary Attack on Face Recognition This is the Pytorch code of our paper "Geometrically Adaptive Dictionary Attack on Face R

6 Nov 21, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
UniLM AI - Large-scale Self-supervised Pre-training across Tasks, Languages, and Modalities

Pre-trained (foundation) models across tasks (understanding, generation and translation), languages (100+ languages), and modalities (language, image, audio, vision + language, audio + language, etc.

Microsoft 7.6k Jan 01, 2023
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Tejas Prajapati 16 Sep 11, 2021
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022