[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Overview

Introduction

This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification.

Get started

git clone https://github.com/weleen/AGRL.pytorch /path/to/save
pip install -r requirements.txt
cd torchreid/metrics/rank_cylib && make

Dataset

create dataset directory

mkdir data

Prepare datasets:

├── dukemtmc-vidreid
│   ├── DukeMTMC-VideoReID
│   ├── pose.json
│   ├── split_gallery.json
│   ├── split_query.json
│   └── split_train.json
│
├── ilids-vid
│   ├── i-LIDS-VID
│   ├── pose.json
│   ├── splits.json
│   └── train-test people splits
│
├── mars
│   ├── bbox_test
│   ├── bbox_train
│   ├── info
│   ├── pose.json
│   └── train-test people splits
│
├── prid2011
    ├── pose.json
    ├── prid_2011
    ├── prid_2011.zip
    ├── splits_prid2011.json
    └── train_test_splits_prid.mat

pose.json is obtained by running AlphaPose, we put the files on Baidu Netdisk (code: luxr) and Google Driver.

More details could be found in DATASETS.md.

Train

bash scripts/train_vidreid_xent_htri_vmgn_mars.sh

To use multiple GPUs, you can set --gpu-devices 0,1,2,3.

Note: To resume training, you can use --resume path/to/model to load a checkpoint from which saved model weights and start_epoch will be used. Learning rate needs to be initialized carefully. If you just wanna load a pretrained model by discarding layers that do not match in size (e.g. classification layer), use --load-weights path/to/model instead.

Please refer to the code for more details.

Test

create a directory to store model weights mkdir saved-models/ beforehand. Then, run the following command to test

bash scripts/test_vidreid_xent_htri_vmgn_mars.sh

All the model weights are available.

Model

All the results tested with 4 TITAN X GPU and 64GB memory.

Dataset Rank-1 mAP
iLIDS-VID 83.7% -
PRID2011 93.1% -
MARS 89.8% 81.1%
DukeMTMC-vidreid 96.7% 94.2%

Citation

Please kindly cite this project in your paper if it is helpful 😊 :

@article{wu2020adaptive,
  title={Adaptive graph representation learning for video person re-identification},
  author={Wu, Yiming and Bourahla, Omar El Farouk and Li, Xi* and Wu, Fei and Tian, Qi and Zhou, Xue},
  journal={IEEE Transactions on Image Processing},
  year={2020},
  publisher={IEEE}
}

This project is developed based on deep-person-reid and STE-NVAN.

Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
[NeurIPS 2021] ORL: Unsupervised Object-Level Representation Learning from Scene Images

Unsupervised Object-Level Representation Learning from Scene Images This repository contains the official PyTorch implementation of the ORL algorithm

Jiahao Xie 55 Dec 03, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch

Differentiable Neural Computers and family, for Pytorch Includes: Differentiable Neural Computers (DNC) Sparse Access Memory (SAM) Sparse Differentiab

ixaxaar 302 Dec 14, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
Heterogeneous Temporal Graph Neural Network

Heterogeneous Temporal Graph Neural Network This repository contains the datasets and source code of HTGNN. run_mag.ipynb is the training and testing

15 Dec 22, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
This repository is for DSA and CP scripts for reference.

dsa-script-collections This Repo is the collection of DSA and CP scripts for reference. Contents Python Bubble Sort Insertion Sort Merge Sort Quick So

Aditya Kumar Pandey 9 Nov 22, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
YOLOv3 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices

Ultralytics 9.3k Jan 07, 2023
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022