Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

Overview

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

by Lukas Hoyer, Dengxin Dai, and Luc Van Gool

[Arxiv] [Paper]

Overview

Unsupervised domain adaptation (UDA) aims to adapt a model trained on synthetic data to real-world data without requiring expensive annotations of real-world images. As UDA methods for semantic segmentation are usually GPU memory intensive, most previous methods operate only on downscaled images. We question this design as low-resolution predictions often fail to preserve fine details. The alternative of training with random crops of high-resolution images alleviates this problem but falls short in capturing long-range, domain-robust context information.

Therefore, we propose HRDA, a multi-resolution training approach for UDA, that combines the strengths of small high-resolution crops to preserve fine segmentation details and large low-resolution crops to capture long-range context dependencies with a learned scale attention, while maintaining a manageable GPU memory footprint.

HRDA Overview

HRDA enables adapting small objects and preserving fine segmentation details. It significantly improves the state-of-the-art performance by 5.5 mIoU for GTA→Cityscapes and by 4.9 mIoU for Synthia→Cityscapes, resulting in an unprecedented performance of 73.8 and 65.8 mIoU, respectively.

UDA over time

The more detailed domain-adaptive semantic segmentation of HRDA, compared to the previous state-of-the-art UDA method DAFormer, can also be observed in example predictions from the Cityscapes validation set.

Demo Color Palette

For more information on HRDA, please check our [Paper].

If you find HRDA useful in your research, please consider citing:

@Article{hoyer2022hrda,
  title={{HRDA}: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation},
  author={Hoyer, Lukas and Dai, Dengxin and Van Gool, Luc},
  journal={arXiv preprint arXiv:2204.13132},
  year={2022}
}

Setup Environment

For this project, we used python 3.8.5. We recommend setting up a new virtual environment:

python -m venv ~/venv/hrda
source ~/venv/hrda/bin/activate

In that environment, the requirements can be installed with:

pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html
pip install mmcv-full==1.3.7  # requires the other packages to be installed first

Further, please download the MiT weights from SegFormer using the following script. If problems occur with the automatic download, please follow the instructions for a manual download within the script.

sh tools/download_checkpoints.sh

Setup Datasets

Cityscapes: Please, download leftImg8bit_trainvaltest.zip and gt_trainvaltest.zip from here and extract them to data/cityscapes.

GTA: Please, download all image and label packages from here and extract them to data/gta.

Synthia: Please, download SYNTHIA-RAND-CITYSCAPES from here and extract it to data/synthia.

The final folder structure should look like this:

DAFormer
├── ...
├── data
│   ├── cityscapes
│   │   ├── leftImg8bit
│   │   │   ├── train
│   │   │   ├── val
│   │   ├── gtFine
│   │   │   ├── train
│   │   │   ├── val
│   ├── gta
│   │   ├── images
│   │   ├── labels
│   ├── synthia
│   │   ├── RGB
│   │   ├── GT
│   │   │   ├── LABELS
├── ...

Data Preprocessing: Finally, please run the following scripts to convert the label IDs to the train IDs and to generate the class index for RCS:

python tools/convert_datasets/gta.py data/gta --nproc 8
python tools/convert_datasets/cityscapes.py data/cityscapes --nproc 8
python tools/convert_datasets/synthia.py data/synthia/ --nproc 8

Testing & Predictions

The provided HRDA checkpoint trained on GTA->Cityscapes (already downloaded by tools/download_checkpoints.sh) can be tested on the Cityscapes validation set using:

sh test.sh work_dirs/gtaHR2csHR_hrda_246ef

The predictions are saved for inspection to work_dirs/gtaHR2csHR_hrda_246ef/preds and the mIoU of the model is printed to the console. The provided checkpoint should achieve 73.79 mIoU. Refer to the end of work_dirs/gtaHR2csHR_hrda_246ef/20220215_002056.log for more information such as the class-wise IoU.

If you want to visualize the LR predictions, HR predictions, or scale attentions of HRDA on the validation set, please refer to test.sh for further instructions.

Training

For convenience, we provide an annotated config file of the final HRDA. A training job can be launched using:

python run_experiments.py --config configs/hrda/gtaHR2csHR_hrda.py

The logs and checkpoints are stored in work_dirs/.

For the other experiments in our paper, we use a script to automatically generate and train the configs:

python run_experiments.py --exp <ID>

More information about the available experiments and their assigned IDs, can be found in experiments.py. The generated configs will be stored in configs/generated/.

When training a model on Synthia->Cityscapes, please note that the evaluation script calculates the mIoU for all 19 Cityscapes classes. However, Synthia contains only labels for 16 of these classes. Therefore, it is a common practice in UDA to report the mIoU for Synthia->Cityscapes only on these 16 classes. As the Iou for the 3 missing classes is 0, you can do the conversion mIoU16 = mIoU19 * 19 / 16.

Framework Structure

This project is based on mmsegmentation version 0.16.0. For more information about the framework structure and the config system, please refer to the mmsegmentation documentation and the mmcv documentation.

The most relevant files for HRDA are:

Acknowledgements

HRDA is based on the following open-source projects. We thank their authors for making the source code publicly available.

Owner
Lukas Hoyer
Doctoral student at ETH Zurich
Lukas Hoyer
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

87 Oct 19, 2022
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Quantized tflite models for ailia TFLite Runtime

ailia-models-tflite Quantized tflite models for ailia TFLite Runtime About ailia TFLite Runtime ailia TF Lite Runtime is a TensorFlow Lite compatible

ax Inc. 13 Dec 23, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022