DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Overview

Evaluation, Training, Demo, and Inference of DeFMO

DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, Jiri Matas, Marc Pollefeys

Qualitative results: https://www.youtube.com/watch?v=pmAynZvaaQ4

Pre-trained models

The pre-trained DeFMO model as reported in the paper is available here: https://polybox.ethz.ch/index.php/s/M06QR8jHog9GAcF. Put them into ./saved_models sub-folder.

Inference

For generating video temporal super-resolution:

python run.py --video example/falling_pen.avi

For generating temporal super-resolution of a single frame with the given background:

python run.py --im example/im.png --bgr example/bgr.png

Evaluation

After downloading the pre-trained models and downloading the evaluation datasets, you can run

python eval_dataset.py

Synthetic dataset generation

For the dataset generation, please download:

Then, insert your paths in renderer/settings.py file. To generate the dataset, run in renderer sub-folder:

python run_render.py

Note that the full training dataset with 50 object categories, 1000 objects per category, and 24 timestamps takes up to 1 TB of storage memory. Due to this and also the ShapeNet licence, we cannot make the pre-generated dataset public - please generate it by yourself using the steps above.

Training

Set up all paths in main_settings.py and run

python train.py

Evaluation on real-world datasets

All evaluation datasets can be found at http://cmp.felk.cvut.cz/fmo/. We provide a download_datasets.sh script to download the Falling Objects, the TbD-3D, and the TbD datasets.

Reference

If you use this repository, please cite the following publication ( https://arxiv.org/abs/2012.00595 ):

@inproceedings{defmo,
  author = {Denys Rozumnyi and Martin R. Oswald and Vittorio Ferrari and Jiri Matas and Marc Pollefeys},
  title = {DeFMO: Deblurring and Shape Recovery of Fast Moving Objects},
  booktitle = {CVPR},
  address = {Nashville, Tennessee, USA},
  month = jun,
  year = {2021}
}
Comments
  • Question about training set

    Question about training set

    Hi, thanks for your generous sharing.

    I have a question about training set generating in your work. I generated a training set following your codes. Its size is about 100GB, far less than 1TB. Is there anything wrong?

    Thanks.

    opened by fan-hd 11
  • Apply your model on custom longer video clips

    Apply your model on custom longer video clips

    Hi thank you for releasing your code,

    Can your model be applied on custom videos about high speed train crossing? Video clips last from 3 to 10 seconds, my idea was to preprocess them with your code in order to keep the same frame rate and have a better video quality for later object detection. This is an example frame from original video clip:

    vlcsnap-2021-05-25-15h27m32s030

    I tried to run your code on a video about 6 seconds and the result was a longer video (about 13min) with a lower level of detail, probably I'm doing something wrong. This is an example frame from output video clip:

    vlcsnap-2021-05-25-15h26m22s237

    How can I correctly reconstruct the quality of single frames usin all the information contained in the video?

    opened by fabiozappo 4
  • Question about comparison with Jin et al.'s work (CVPR2018)

    Question about comparison with Jin et al.'s work (CVPR2018)

    Hi, thank you for your interesting work! I have a question about the comparison of methods in your work. When making comparisons, did you retrain Jin et al.'s model ("Learning to Extract a Video Sequence from a Single Motion-Blurred Image" from CVPR 2018), or did you just use their pre-trained checkpoints? I couldn't find the training code on their github page.

    opened by zzh-tech 2
  • Padding in Time-Consistency Loss

    Padding in Time-Consistency Loss

    Hi,

    Congratulations!

    I found that "padding = tuple(side // 10 for side in sh[:2]) + (0,)" for normalized cross-correlation. Does it only implement padding to the height axis, since the padding tuple will be of size (4//10, H//10, 0)?

    Thanks a lot.

    opened by JLiu-Edinburgh 1
  • run on google colab!

    run on google colab!

    I'm confused! and need to run the code on google colab or more explanation about how to implement that code in vscode or something else .if it know someone please help me

    opened by ganikas 3
Releases(v1.0)
Owner
Denys Rozumnyi
PhD student at ETH Zurich.
Denys Rozumnyi
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Ranger deep learning optimizer rewrite to use newest components

Ranger21 - integrating the latest deep learning components into a single optimizer Ranger deep learning optimizer rewrite to use newest components Ran

Less Wright 266 Dec 28, 2022
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022