DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Overview

Evaluation, Training, Demo, and Inference of DeFMO

DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, Jiri Matas, Marc Pollefeys

Qualitative results: https://www.youtube.com/watch?v=pmAynZvaaQ4

Pre-trained models

The pre-trained DeFMO model as reported in the paper is available here: https://polybox.ethz.ch/index.php/s/M06QR8jHog9GAcF. Put them into ./saved_models sub-folder.

Inference

For generating video temporal super-resolution:

python run.py --video example/falling_pen.avi

For generating temporal super-resolution of a single frame with the given background:

python run.py --im example/im.png --bgr example/bgr.png

Evaluation

After downloading the pre-trained models and downloading the evaluation datasets, you can run

python eval_dataset.py

Synthetic dataset generation

For the dataset generation, please download:

Then, insert your paths in renderer/settings.py file. To generate the dataset, run in renderer sub-folder:

python run_render.py

Note that the full training dataset with 50 object categories, 1000 objects per category, and 24 timestamps takes up to 1 TB of storage memory. Due to this and also the ShapeNet licence, we cannot make the pre-generated dataset public - please generate it by yourself using the steps above.

Training

Set up all paths in main_settings.py and run

python train.py

Evaluation on real-world datasets

All evaluation datasets can be found at http://cmp.felk.cvut.cz/fmo/. We provide a download_datasets.sh script to download the Falling Objects, the TbD-3D, and the TbD datasets.

Reference

If you use this repository, please cite the following publication ( https://arxiv.org/abs/2012.00595 ):

@inproceedings{defmo,
  author = {Denys Rozumnyi and Martin R. Oswald and Vittorio Ferrari and Jiri Matas and Marc Pollefeys},
  title = {DeFMO: Deblurring and Shape Recovery of Fast Moving Objects},
  booktitle = {CVPR},
  address = {Nashville, Tennessee, USA},
  month = jun,
  year = {2021}
}
Comments
  • Question about training set

    Question about training set

    Hi, thanks for your generous sharing.

    I have a question about training set generating in your work. I generated a training set following your codes. Its size is about 100GB, far less than 1TB. Is there anything wrong?

    Thanks.

    opened by fan-hd 11
  • Apply your model on custom longer video clips

    Apply your model on custom longer video clips

    Hi thank you for releasing your code,

    Can your model be applied on custom videos about high speed train crossing? Video clips last from 3 to 10 seconds, my idea was to preprocess them with your code in order to keep the same frame rate and have a better video quality for later object detection. This is an example frame from original video clip:

    vlcsnap-2021-05-25-15h27m32s030

    I tried to run your code on a video about 6 seconds and the result was a longer video (about 13min) with a lower level of detail, probably I'm doing something wrong. This is an example frame from output video clip:

    vlcsnap-2021-05-25-15h26m22s237

    How can I correctly reconstruct the quality of single frames usin all the information contained in the video?

    opened by fabiozappo 4
  • Question about comparison with Jin et al.'s work (CVPR2018)

    Question about comparison with Jin et al.'s work (CVPR2018)

    Hi, thank you for your interesting work! I have a question about the comparison of methods in your work. When making comparisons, did you retrain Jin et al.'s model ("Learning to Extract a Video Sequence from a Single Motion-Blurred Image" from CVPR 2018), or did you just use their pre-trained checkpoints? I couldn't find the training code on their github page.

    opened by zzh-tech 2
  • Padding in Time-Consistency Loss

    Padding in Time-Consistency Loss

    Hi,

    Congratulations!

    I found that "padding = tuple(side // 10 for side in sh[:2]) + (0,)" for normalized cross-correlation. Does it only implement padding to the height axis, since the padding tuple will be of size (4//10, H//10, 0)?

    Thanks a lot.

    opened by JLiu-Edinburgh 1
  • run on google colab!

    run on google colab!

    I'm confused! and need to run the code on google colab or more explanation about how to implement that code in vscode or something else .if it know someone please help me

    opened by ganikas 3
Releases(v1.0)
Owner
Denys Rozumnyi
PhD student at ETH Zurich.
Denys Rozumnyi
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
RGBD-Net - This repository contains a pytorch lightning implementation for the 3DV 2021 RGBD-Net paper.

[3DV 2021] We propose a new cascaded architecture for novel view synthesis, called RGBD-Net, which consists of two core components: a hierarchical depth regression network and a depth-aware generator

Phong Nguyen Ha 4 May 26, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline.

TorchX is a library containing standard DSLs for authoring and running PyTorch related components for an E2E production ML pipeline

193 Dec 22, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Tensorflow Repo for "DeepGCNs: Can GCNs Go as Deep as CNNs?"

DeepGCNs: Can GCNs Go as Deep as CNNs? In this work, we present new ways to successfully train very deep GCNs. We borrow concepts from CNNs, mainly re

Guohao Li 612 Nov 15, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022