DeepStruc is a Conditional Variational Autoencoder which can predict the mono-metallic nanoparticle from a Pair Distribution Function.

Overview

ChemRxiv | [Paper] XXX

DeepStruc

Welcome to DeepStruc, a Deep Generative Model (DGM) that learns the relation between PDF and atomic structure and thereby solves a structure from a PDF!

  1. DeepStruc
  2. Getting started (with Colab)
  3. Getting started (own computer)
    1. Install requirements
    2. Simulate data
    3. Train model
    4. Predict
  4. Author
  5. Cite
  6. Acknowledgments
  7. License

We here apply DeepStruc for the structural analysis of a model system of mono-metallic nanoparticle (MMNPs) with seven different structure types and demonstrate the method for both simulated and experimental PDFs. DeepStruc can reconstruct simulated data with an average mean absolute error (MAE) of the atom xyz-coordinates on 0.093 ± 0.058 Å after fitting a contraction/extraction factor, an ADP and a scale parameter. We demonstrate the generative capability of DeepStruc on a dataset of face-centered cubic (fcc), hexagonal closed packed (hcp) and stacking faulted structures, where DeepStruc can recognize the stacking faulted structures as an interpolation between fcc and hcp and construct new structural models based on a PDF. The MAE is in this example 0.030 ± 0.019 Å.

The MMNPs are provided as a graph-based input to the encoder of DeepStruc. We compare DeepStruc with a similar DGM without the graph-based encoder. DeepStruc is able to reconstruct the structures using a smaller dimension of the latent space thus having a better generative capabillity. We also compare DeepStruc with a brute-force modelling approach and a tree-based classification algorithm. The ML models are significantly faster than the brute-force approach, but DeepStruc can furthermore create a latent space from where synthetic structures can be sampled which the tree-based method cannot! The baseline models can be found in other repositories: brute-force, MetalFinder and CVAE. alt text

Getting started (with Colab)

Using DeepStruc on your own PDFs is straightforward and does not require anything installed or downloaded to your computer. Follow the instructions in our Colab notebook and try to play around.

Getting started (own computer)

Follow these step if you want to train DeepStruc and predict with DeepStruc locally on your own computer.

Install requirements

See the install folder.

Simulate data

See the data folder.

Train model

To train your own DeepStruc model simply run:

python train.py

A list of possible arguments or run the '--help' argument for additional information.
If you are intersted in changing the architecture of the model go to train.py and change the model_arch dictionary.

Arg Description Example
-h or --help Prints help message.
-d or --data_dir Directory containing graph training, validation and test data. str -d ./data/graphs
-s or --save_dir Directory where models will be saved. This is also used for loading a learner. str -s bst_model
-r or --resume_model If 'True' the save_dir model is loaded and training is continued. bool -r True
-e or --epochs Number of maximum epochs. int -e 100
-b or --batch_size Number of graphs in each batch. int -b 20
-l or --learning_rate Learning rate. float -l 1e-4
-B or --beta Initial beta value for scaling KLD. float -B 0.1
-i or --beta_increase Increments of beta when the threshold is met. float -i 0.1
-x or --beta_max Highst value beta can increase to. float -x 5
-t or --reconstruction_th Reconstruction threshold required before beta is increased. float -t 0.001
-n or --num_files Total number of files loaded. Files will be split 60/20/20. If 'None' then all files are loaded. int -n 500
-c or --compute Train model on CPU or GPU. Choices: 'cpu', 'gpu16', 'gpu32' and 'gpu64'. str -c gpu32
-L or --latent_dim Number of latent space dimensions. int -L 3

Predict

To predict a MMNP using DeepStruc or your own model on a PDF:

python predict.py

A list of possible arguments or run the '--help' argument for additional information.

Arg Description Example
-h or --help Prints help message.
-d or --data Path to data or data directory. If pointing to data directory all datasets must have same format. str -d data/experimental_PDFs/JQ_S1.gr
-m or --model Path to model. If 'None' GUI will open. str -m ./models/DeepStruc
-n or --num_samples Number of samples/structures generated for each unique PDF. int -n 10
-s or --sigma Sample to '-s' sigma in the normal distribution. float -s 7
-p or --plot_sampling Plots sampled structures on top of DeepStruc training data. Model must be DeepStruc. bool -p True
-g or --save_path Path to directory where predictions will be saved. bool -g ./best_preds
-i or --index_plot Highlights specific reconstruction in the latent space. --data must be specific file and not directory and '--plot True'. int -i 4
-P or --plot_data If True then the first loaded PDF is plotted and shown after normalization. bool -P ./best_preds

Authors

Andy S. Anker1
Emil T. S. Kjær1
Marcus N. Weng1
Simon J. L. Billinge2, 3
Raghavendra Selvan4, 5
Kirsten M. Ø. Jensen1

1 Department of Chemistry and Nano-Science Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
2 Department of Applied Physics and Applied Mathematics Science, Columbia University, New York, NY 10027, USA.
3 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
4 Department of Computer Science, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
5 Department of Neuroscience, University of Copenhagen, 2200, Copenhagen N.

Should there be any question, desired improvement or bugs please contact us on GitHub or through email: [email protected] or [email protected].

Cite

If you use our code or our results, please consider citing our papers. Thanks in advance!

@article{kjær2022DeepStruc,
title={DeepStruc: Towards structure solution from pair distribution function data using deep generative models},
author={Emil T. S. Kjær, Andy S. Anker, Marcus N. Weng, Simon J. L. Billinge, Raghavendra Selvan, Kirsten M. Ø. Jensen},
year={2022}}
@article{anker2020characterising,
title={Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models},
author={Anker, Andy Sode and Kjær, Emil TS and Dam, Erik B and Billinge, Simon JL and Jensen, Kirsten MØ and Selvan, Raghavendra},
year={2020}}

Acknowledgments

Our code is developed based on the the following publication:

@article{anker2020characterising,
title={Characterising the atomic structure of mono-metallic nanoparticles from x-ray scattering data using conditional generative models},
author={Anker, Andy Sode and Kjær, Emil TS and Dam, Erik B and Billinge, Simon JL and Jensen, Kirsten MØ and Selvan, Raghavendra},
year={2020}}

License

This project is licensed under the Apache License Version 2.0, January 2004 - see the LICENSE file for details.

Owner
Emil Thyge Skaaning Kjær
Ph.D student in nanoscience at the University of Copenhagen.
Emil Thyge Skaaning Kjær
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

18 Jun 28, 2022
PyTorch Code of "Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spatiotemporal Dynamics"

Memory In Memory Networks It is based on the paper Memory In Memory: A Predictive Neural Network for Learning Higher-Order Non-Stationarity from Spati

Yang Li 12 May 30, 2022
The dynamics of representation learning in shallow, non-linear autoencoders

The dynamics of representation learning in shallow, non-linear autoencoders The package is written in python and uses the pytorch implementation to ML

Maria Refinetti 4 Jun 08, 2022
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory"

memory_efficient_attention.pytorch A human-readable PyTorch implementation of "Self-attention Does Not Need O(n^2) Memory" (Rabe&Staats'21). def effic

Ryuichiro Hataya 7 Dec 26, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to handle and build

simple, elegant and safe Introduction PassAPI is a password generator in hash format and fully developed in Python, with the aim of teaching how to ha

Johnsz 2 Mar 02, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
Code for the paper "Zero-shot Natural Language Video Localization" (ICCV2021, Oral).

Zero-shot Natural Language Video Localization (ZSNLVL) by Pseudo-Supervised Video Localization (PSVL) This repository is for Zero-shot Natural Languag

Computer Vision Lab. @ GIST 37 Dec 27, 2022
Adaptive Denoising Training (ADT) for Recommendation.

DenoisingRec Adaptive Denoising Training for Recommendation. This is the pytorch implementation of our paper at WSDM 2021: Denoising Implicit Feedback

Wenjie Wang 51 Dec 30, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022