StyleMapGAN - Official PyTorch Implementation

Overview

StyleMapGAN - Official PyTorch Implementation

StyleMapGAN: Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing
Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, Youngjung Uh
In CVPR 2021.

Paper: https://arxiv.org/abs/2104.14754
Video: https://youtu.be/qCapNyRA_Ng

Abstract: Generative adversarial networks (GANs) synthesize realistic images from random latent vectors. Although manipulating the latent vectors controls the synthesized outputs, editing real images with GANs suffers from i) time-consuming optimization for projecting real images to the latent vectors, ii) or inaccurate embedding through an encoder. We propose StyleMapGAN: the intermediate latent space has spatial dimensions, and a spatially variant modulation replaces AdaIN. It makes the embedding through an encoder more accurate than existing optimization-based methods while maintaining the properties of GANs. Experimental results demonstrate that our method significantly outperforms state-of-the-art models in various image manipulation tasks such as local editing and image interpolation. Last but not least, conventional editing methods on GANs are still valid on our StyleMapGAN. Source code is available at https://github.com/naver-ai/StyleMapGAN.

Demo

Youtube video Click the figure to watch the teaser video.

Interactive demo app Run demo in your local machine.

All test images are from CelebA-HQ, AFHQ, and LSUN.

python demo.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --dataset celeba_hq

Installation

ubuntu gcc 7.4.0 CUDA CUDA-driver cudnn7 conda Python 3.6.12 pytorch 1.4.0

Clone this repository:

git clone https://github.com/naver-ai/StyleMapGAN.git
cd StyleMapGAN/

Install the dependencies:

conda create -y -n stylemapgan python=3.6.12
conda activate stylemapgan
./install.sh

Datasets and pre-trained networks

We provide a script to download datasets used in StyleMapGAN and the corresponding pre-trained networks. The datasets and network checkpoints will be downloaded and stored in the data and expr/checkpoints directories, respectively.

CelebA-HQ. To download the CelebA-HQ dataset and parse it, run the following commands:

# Download raw images and create LMDB datasets using them
# Additional files are also downloaded for local editing
bash download.sh create-lmdb-dataset celeba_hq

# Download the pretrained network (256x256)
bash download.sh download-pretrained-network-256 celeba_hq

# Download the pretrained network (1024x1024 image / 16x16 stylemap / Light version of Generator)
bash download.sh download-pretrained-network-1024 ffhq_16x16

AFHQ. For AFHQ, change above commands from 'celeba_hq' to 'afhq'.

Train network

Implemented using DistributedDataParallel.

# CelebA-HQ
python train.py --dataset celeba_hq --train_lmdb data/celeba_hq/LMDB_train --val_lmdb data/celeba_hq/LMDB_val

# AFHQ
python train.py --dataset afhq --train_lmdb data/afhq/LMDB_train --val_lmdb data/afhq/LMDB_val

# CelebA-HQ / 1024x1024 image / 16x16 stylemap / Light version of Generator
python train.py --size 1024 --latent_spatial_size 16 --small_generator --dataset celeba_hq --train_lmdb data/celeba_hq/LMDB_train --val_lmdb data/celeba_hq/LMDB_val 

Generate images

Reconstruction Results are saved to expr/reconstruction.

# CelebA-HQ
python generate.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --mixing_type reconstruction --test_lmdb data/celeba_hq/LMDB_test

# AFHQ
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type reconstruction --test_lmdb data/afhq/LMDB_test

W interpolation Results are saved to expr/w_interpolation.

# CelebA-HQ
python generate.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --mixing_type w_interpolation --test_lmdb data/celeba_hq/LMDB_test

# AFHQ
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type w_interpolation --test_lmdb data/afhq/LMDB_test

Local editing Results are saved to expr/local_editing. We pair images using a target semantic mask similarity. If you want to see details, please follow preprocessor/README.md.

# Using GroundTruth(GT) segmentation masks for CelebA-HQ dataset.
python generate.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --mixing_type local_editing --test_lmdb data/celeba_hq/LMDB_test --local_editing_part nose

# Using half-and-half masks for AFHQ dataset.
python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type local_editing --test_lmdb data/afhq/LMDB_test

Unaligned transplantation Results are saved to expr/transplantation. It shows local transplantations examples of AFHQ. We recommend the demo code instead of this.

python generate.py --ckpt expr/checkpoints/afhq_256_8x8.pt --mixing_type transplantation --test_lmdb data/afhq/LMDB_test

Random Generation Results are saved to expr/random_generation. It shows random generation examples.

python generate.py --mixing_type random_generation --ckpt expr/checkpoints/celeba_hq_256_8x8.pt

Style Mixing Results are saved to expr/stylemixing. It shows style mixing examples.

python generate.py --mixing_type stylemixing --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --test_lmdb data/celeba_hq/LMDB_test

Semantic Manipulation Results are saved to expr/semantic_manipulation. It shows local semantic manipulation examples.

python semantic_manipulation.py --ckpt expr/checkpoints/celeba_hq_256_8x8.pt --LMDB data/celeba_hq/LMDB --svm_train_iter 10000

Metrics

  • Reconstruction: LPIPS, MSE
  • W interpolation: FIDlerp
  • Generation: FID
  • Local editing: MSEsrc, MSEref, Detectability (Refer to CNNDetection)

If you want to see details, please follow metrics/README.md.

License

The source code, pre-trained models, and dataset are available under Creative Commons BY-NC 4.0 license by NAVER Corporation. You can use, copy, tranform and build upon the material for non-commercial purposes as long as you give appropriate credit by citing our paper, and indicate if changes were made.

For business inquiries, please contact [email protected].
For technical and other inquires, please contact [email protected].

Citation

If you find this work useful for your research, please cite our paper:

@inproceedings{kim2021stylemapgan,
  title={Exploiting Spatial Dimensions of Latent in GAN for Real-time Image Editing},
  author={Kim, Hyunsu and Choi, Yunjey and Kim, Junho and Yoo, Sungjoo and Uh, Youngjung},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Related Projects

Model code starts from StyleGAN2 PyTorch unofficial code, which refers to StyleGAN2 official code. LPIPS, FID, and CNNDetection codes are used for evaluation. In semantic manipulation, we used StyleGAN pretrained network to get positive and negative samples by ranking. The demo code starts from Neural-Collage.

Owner
NAVER AI
Official account of NAVER AI, Korea No.1 Industrial AI Research Group
NAVER AI
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Tensorflow 2.x implementation of Vision-Transformer model

Vision Transformer Unofficial Tensorflow 2.x implementation of the Transformer based Image Classification model proposed by the paper AN IMAGE IS WORT

Soumik Rakshit 16 Jul 20, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
It is the assignment for COMP 576 in Rice University

COMP-576 It is the assignment for COMP 576 in Rice University There are two programming assignments and one Final Project. Assignment 1: It is a MLP a

Maojie Tang 1 Nov 25, 2021
Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper

Divide and Remaster Utility Tools Utility tools for the "Divide and Remaster" dataset, introduced as part of the Cocktail Fork problem paper The DnR d

Darius Petermann 46 Dec 11, 2022
render sprites into your desktop environment as shaped windows using GTK

spritegtk render static or animated sprites into your desktop environment as dynamic shaped windows using GTK requires pycairo and PYGobject: pip inst

hermit 20 Oct 27, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
This is the code for HOI Transformer

HOI Transformer Code for CVPR 2021 accepted paper End-to-End Human Object Interaction Detection with HOI Transformer. Reproduction We recomend you to

BigBangEpoch 124 Dec 29, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Digan - Official PyTorch implementation of Generating Videos with Dynamics-aware Implicit Generative Adversarial Networks

DIGAN (ICLR 2022) Official PyTorch implementation of "Generating Videos with Dyn

Sihyun Yu 147 Dec 31, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022