The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

Overview

OverlapTransformer

The code for our paper submitted to RAL/IROS 2022:

OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition. PDF

OverlapTransformer is a novel lightweight neural network exploiting the LiDAR range images to achieve fast execution with less than 4 ms per frame using python, less than 2 ms per frame using C++ in LiDAR similarity estimation. It is a newer version of our previous OverlapNet, which is faster and more accurate in LiDAR-based loop closure detection and place recognition.

Developed by Junyi Ma, Xieyuanli Chen and Jun Zhang.

Haomo Dataset

Fig. 1 An online demo for finding the top1 candidate with OverlapTransformer on sequence 1-1 (database) and 1-3 (query) of Haomo Dataset.

Fig. 2 Haomo Dataset which is collected by HAOMO.AI.

More details of Haomo Dataset can be found in dataset description (link).

Table of Contents

  1. Introduction and Haomo Dataset
  2. Publication
  3. Dependencies
  4. How to use
  5. License

Publication

If you use our implementation in your academic work, please cite the corresponding paper (PDF):

@article{ma2022arxiv, 
	author = {Junyi Ma and Jun Zhang and Jintao Xu and Rui Ai and Weihao Gu and Cyrill Stachniss and Xieyuanli Chen},
	title  = {{OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition}},
	journal = {arXiv preprint},
	eprint = {2203.03397},
	year = {2022}
}

Dependencies

We use pytorch-gpu for neural networks.

An nvidia GPU is needed for faster retrival. OverlapTransformer is also fast enough when using the neural network on CPU.

To use a GPU, first you need to install the nvidia driver and CUDA.

  • CUDA Installation guide: link
    We use CUDA 11.3 in our work. Other versions of CUDA are also supported but you should choose the corresponding torch version in the following Torch dependences.

  • System dependencies:

    sudo apt-get update 
    sudo apt-get install -y python3-pip python3-tk
    sudo -H pip3 install --upgrade pip
  • Torch dependences:
    Following this link, you can download Torch dependences by pip:

    pip3 install torch==1.10.2+cu113 torchvision==0.11.3+cu113 torchaudio==0.10.2+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html

    or by conda:

    conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Other Python dependencies (may also work with different versions than mentioned in the requirements file):

    sudo -H pip3 install -r requirements.txt

How to use

We provide a training and test tutorials for KITTI sequences in this repository. The tutorials for Haomo dataset will be released together with Haomo dataset.

We recommend you follow our code and data structures as follows.

Code structure

├── config
│   ├── config_haomo.yml
│   └── config.yml
├── modules
│   ├── loss.py
│   ├── netvlad.py
│   ├── overlap_transformer_haomo.py
│   └── overlap_transformer.py
├── test
│   ├── test_haomo_topn_prepare.py
│   ├── test_haomo_topn.py
│   ├── test_kitti00_PR_prepare.py
│   ├── test_kitti00_PR.py
│   ├── test_results_haomo
│   │   └── predicted_des_L2_dis_bet_traj_forward.npz (to be generated)
│   └── test_results_kitti
│       └── predicted_des_L2_dis.npz (to be generated)
├── tools
│   ├── read_all_sets.py
│   ├── read_samples_haomo.py
│   ├── read_samples.py
│   └── utils
│       ├── gen_depth_data.py
│       ├── split_train_val.py
│       └── utils.py
├── train
│   ├── training_overlap_transformer_haomo.py
│   └── training_overlap_transformer_kitti.py
├── valid
│   └── valid_seq.py
├── visualize
│   ├── des_list.npy
│   └── viz_haomo.py
└── weights
    ├── pretrained_overlap_transformer_haomo.pth.tar
    └── pretrained_overlap_transformer.pth.tar

Dataset structure

In the file config.yaml, the parameters of data_root are described as follows:

  data_root_folder (KITTI sequences root) follows:
  ├── 00
  │   ├── depth_map
  │     ├── 000000.png
  │     ├── 000001.png
  │     ├── 000002.png
  │     ├── ...
  │   └── overlaps
  │     ├── train_set.npz
  ├── 01
  ├── 02
  ├── ...
  └── 10
  
  valid_scan_folder (KITTI sequence 02 velodyne) contains:
  ├── 000000.bin
  ├── 000001.bin
  ...

  gt_valid_folder (KITTI sequence 02 computed overlaps) contains:
  ├── 02
  │   ├── overlap_0.npy
  │   ├── overlap_10.npy
  ...

You need to download or generate the following files and put them in the right positions of the structure above:

  • You can find gt_valid_folder for sequence 02 here.
  • Since the whole KITTI sequences need a large memory, we recommend you generate range images such as 00/depth_map/000000.png by the preprocessing from Overlap_Localization or its C++ version, and we will not provide these images. Please note that in OverlapTransformer, the .png images are used instead of .npy files saved in Overlap_Localization.
  • More directly, you can generate .png range images by the script from OverlapNet updated by us.
  • overlaps folder of each sequence below data_root_folder is provided by the authors of OverlapNet here.

Quick Use

For a quick use, you could download our model pretrained on KITTI, and the following two files also should be downloaded :

Then you should modify demo1_config in the file config.yaml.

Run the demo by:

cd demo
python ./demo_compute_overlap_sim.py

You can see a query scan (000000.bin of KITTI 00) with a reprojected positive sample (000005.bin of KITTI 00) and a reprojected negative sample (000015.bin of KITTI 00), and the corresponding similarity.

Fig. 3 Demo for calculating overlap and similarity with our approach.

Training

In the file config.yaml, training_seqs are set for the KITTI sequences used for training.

You can start the training with

cd train
python ./training_overlap_transformer_kitti.py

You can resume from our pretrained model here for training.

Testing

Once a model has been trained , the performance of the network can be evaluated. Before testing, the parameters shoud be set in config.yaml

  • test_seqs: sequence number for evaluation which is "00" in our work.
  • test_weights: path of the pretrained model.
  • gt_file: path of the ground truth file provided by the author of OverlapNet, which can be downloaded here.

Therefore you can start the testing scripts as follows:

cd test
python test_kitti00_PR_prepare.py
python test_kitti00_PR.py

After you run test_kitti00_PR_prepare.py, a file named predicted_des_L2_dis.npz is generated in test_results_kitti, which is used by python test_kitti00_PR.py

For a quick test of the training and testing procedures, you could use our pretrained model.

Visualization

Visualize evaluation on KITTI 00

Firstly, to visualize evaluation on KITTI 00 with search space, the follwoing three files should be downloaded:

and modify the paths in the file config.yaml. Then

cd visualize
python viz_kitti.py

Fig. 4 Evaluation on KITTI 00 with search space from SuMa++ (a semantic LiDAR SLAM method).

Visualize evaluation on Haomo challenge 1 (after Haomo dataset is released)

We also provide a visualization demo for Haomo dataset after Haomo dataset is released (Fig. 1). Please download the descriptors of database (sequence 1-1 of Haomo dataset) firstly and then:

cd visualize
python viz_haomo.py

C++ implemention

We provide a C++ implemention of OverlapTransformer with libtorch for faster retrival.

  • Please download .pt and put it in the OT_libtorch folder.
  • Before building, make sure that PCL exists in your environment.
  • Here we use LibTorch for CUDA 11.3 (Pre-cxx11 ABI). Please modify the path of Torch_DIR in CMakeLists.txt.
  • For more details of LibTorch installation , please check this website.
    Then you can generate a descriptor of 000000.bin of KITTI 00 by
cd OT_libtorch/ws
mkdir build
cd build/
cmake ..
make -j6
./fast_ot 

You can find our C++ OT can generate a decriptor with less than 2 ms per frame.

License

Copyright 2022, Junyi Ma, Xieyuanli Chen, Jun Zhang, HAOMO.AI Technology Co., Ltd., China.

This project is free software made available under the GPL v3.0 License. For details see the LICENSE file.

Owner
HAOMO.AI
HAOMO.AI Technology Co., Ltd. (HAOMO.AI) is an artificial intelligence technology company dedicated to autonomous driving
HAOMO.AI
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
This repository includes code of my study about Asynchronous in Frequency domain of GAN images.

Exploring the Asynchronous of the Frequency Spectra of GAN-generated Facial Images Binh M. Le & Simon S. Woo, "Exploring the Asynchronous of the Frequ

4 Aug 06, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Spam your friends and famly and when you do your famly will disown you and you will have no friends.

SpamBot9000 Spam your friends and family and when you do your family will disown you and you will have no friends. Terms of Use Disclaimer: Please onl

DJ15 0 Jun 09, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
The-Secret-Sharing-Schemes - This interactive script demonstrates the Secret Sharing Schemes algorithm

The-Secret-Sharing-Schemes This interactive script demonstrates the Secret Shari

Nishaant Goswamy 1 Jan 02, 2022