Ludwig Benchmarking Toolkit

Overview

Ludwig Benchmarking Toolkit

The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an extensible set of tasks, deep learning models, standard datasets and evaluation metrics.

Getting set-up

To get started, use the following commands to set-up your conda environment.

git clone https://github.com/HazyResearch/ludwig-benchmarking-toolkit.git
cd ludwig-benchmarking-toolkit
conda env create -f environments/{environment-osx.yaml, environment-linux.yaml}
conda activate lbt

Relevant files and directories

experiment-templates/task_template.yaml: Every task (i.e. text classification) will have its owns task template. The template specifies the model architecture (encoder and decoder structure), training parameters, and a hyperopt configuration for the task at hand. A large majority of the values of the template will be populated by the values in the hyperopt_config.yaml file and dataset_metadata.yaml at training time. The sample task template located in experiment-templates/task_template.yaml is for text classification. See sample-task-templates/ for other examples.

experiment-templates/hyperopt_config.yaml: provides a range of values for training parameters and hyperopt params that will populate the hyperopt configuration in the model template

experiment-templates/dataset_metadata.yaml: contains list of all available datasets (and associated metadata) that the hyperparameter optimization can be performed over.

model-configs/: contains all encoder specific yaml files. Each files specifies possible values for relevant encoder parameters that will be optimized over. Each file in this directory adheres to the naming convention {encoder_name}_hyperopt.yaml

hyperopt-experiment-configs/: houses all experiment configs built from the templates specified above (note: this folder will be populated at run-time) and will be used when the hyperopt experiment is called. At a high level, each config file specifies the training and hyperopt information for a (task, dataset, architecture) combination. An example might be (text classification, SST2, BERT)

elasticsearch_config.yaml : this is an optional file that is to be defined if an experiment data will be saved to an elastic database.

USAGE

Command-Line Usage

Running your first TOY experiment:

For testing/setup purposes we have included a toy dataset called toy_agnews. This dataset contains a small set of training, test and validation samples from the original agnews dataset.

Before running a full-scale experiment, we recommend running an experiment locally on the toy dataset:

python experiment_driver.py --run_environment local --datasets toy_agnews --custom_models_list rnn

Running your first REAL experiment:

Steps for configuring + running an experiment:

  1. Declare and configure the search space of all non-model specific training and preprocessing hyperparameters in the experiment-templates/hyperopt_config.yaml file. The parameters specified in this file will be used across all model experiments.

  2. Declare and configure the search space of model specific hyperparameters in the {encoder}_hyperopt.yaml files in ./model_configs

    NOTE:

    • for both (1) and (2) see the Ludwig Hyperparamter Optimization guide to see what parameters for training, preprocessing, and input/ouput features can be used in the hyperopt search
    • if the exectuor type is Ray the list of available search spaces and input format differs slightly than the built-in ludwig types. Please see the Ray Tune search space docs for more information.
  3. Run the following command specifying the datasets, encoders, path to elastic DB index config file, run environment and more:

        python experiment_driver.py \
            --experiment_output_dir  
         
          
            --run_environment {local, gcp}
            --elasticsearch_config 
          
           
            --dataset_cache_dir 
           
            
            --custom_model_list 
            
             
            --datasets 
             
               --resume_existing_exp bool 
             
            
           
          
         

NOTE: Please use python experiment_driver.py -h to see list of available datasets, encoders and args

API Usage

It is also possible to run, customize and experiments using LBTs APIs. In the following section, we describe the three flavors of APIs included in LBT.

experiment API

This API provides an alternative method for running experiments. Note that runnin experiments via the API still requires populating the aforemented configuration files

from lbt.experiments import experiment

experiment(
    models = ['rnn', 'bert'],
    datasets = ['agnews'],
    run_environment = "local",
    elastic_search_config = None,
    resume_existing_exp = False,
)

tools API

This API provides access to two tooling integrations (TextAttack and Robustness Gym (RG)). The TextAttack API can be used to generate adversarial attacks. Moreover, users can use the TextAttack interface to augment data files. The RG API which empowers users to inspect model performance on a set of generic, pre-built slices and to add more slices for their specific datasets and use cases.

from lbt.tools.robustnessgym import RG 
from lbt.tools.textattack import attack, augment

# Robustness Gym API Usage
RG( dataset_name="AGNews",
    models=["bert", "rnn"],
    path_to_dataset="agnews.csv", 
    subpopulations=[ "entities", "positive_words", "negative_words"]))

# TextAttack API Usage
attack(dataset_name="AGNews", path_to_model="agnews/model/rnn_model",
    path_to_dataset="agnews.csv", attack_recipe=["CharSwapAugmenter"])

augment(dataset_name="AGNews", transformations_per_example=1
   path_to_dataset="agnews.csv", augmenter=["WordNetAugmenter"])

visualizations API

This API provides out-of-the-box support for visualizations for learning behavior, model performance, and hyperparameter optimization using the training and evaluation statistics generated during model training

import lbt.visualizations

# compare model performance
compare_performance_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_feature_name="class_index",
)

# compare training and validation trajectory
learning_curves_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_feature_name="class_index",
)

# visualize hyperoptimzation search
hyperopt_viz(
    dataset_name="toy_agnews",
    model_name="rnn",
    output_dir="."
)

EXPERIMENT EXTENSIBILITY

Adding new custom datasets

Adding custom dataset requires creating a new LBTDataset class and adding it to the dataset registry. Creating an LBTDataset object requires implementing three class methods: download, process and load. Please see the the ToyAGNews dataset as an example.

Adding new metrics

Adding custom evaluation metrics requires creating a new LBTMetric class and adding it to the metrics registry. Creating an LBTMetric object requires implementing the run class method which takes as potential inputs a path to a model directory, path to a dataset, training batch size, and training statistics. Please see the pre-built LBT metrics for examples.

ELASTICSEARCH RESEARCH DATABASE

To get credentials to upload experiments to the shared Elasticsearch research database, please fill out this form.

Owner
HazyResearch
We are a CS research group led by Prof. Chris Rรฉ.
HazyResearch
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
This is an implementation for the CVPR2020 paper "Learning Invariant Representation for Unsupervised Image Restoration"

Learning Invariant Representation for Unsupervised Image Restoration (CVPR 2020) Introduction This is an implementation for the paper "Learning Invari

GarField 88 Nov 07, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Ivรกn de Paz Centeno 1.9k Dec 30, 2022
Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021)

Transferable Semantic Augmentation for Domain Adaptation Code release for "Transferable Semantic Augmentation for Domain Adaptation" (CVPR 2021) Paper

66 Dec 16, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
This package is for running the semantic SLAM algorithm using extracted planar surfaces from the received detection

Semantic SLAM This package can perform optimization of pose estimated from VO/VIO methods which tend to drift over time. It uses planar surfaces extra

Hriday Bavle 125 Dec 02, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
๐Ÿ… Top 5% in ์ œ2ํšŒ ์—ฐ๊ตฌ๊ฐœ๋ฐœํŠน๊ตฌ ์ธ๊ณต์ง€๋Šฅ ๊ฒฝ์ง„๋Œ€ํšŒ AI SPARK ์ฑŒ๋ฆฐ์ง€

AI_SPARK_CHALLENG_Object_Detection ์ œ2ํšŒ ์—ฐ๊ตฌ๊ฐœ๋ฐœํŠน๊ตฌ ์ธ๊ณต์ง€๋Šฅ ๊ฒฝ์ง„๋Œ€ํšŒ AI SPARK ์ฑŒ๋ฆฐ์ง€ ๐Ÿ… Top 5% in mAP(0.75) (443๋ช… ์ค‘ 13๋“ฑ, mAP: 0.98116) ๋Œ€ํšŒ ์„ค๋ช… Edge ํ™˜๊ฒฝ์—์„œ์˜ ๊ฐ€์ถ• Object Dete

3 Sep 19, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Code for "Discovering Non-monotonic Autoregressive Orderings with Variational Inference" (paper and code updated from ICLR 2021)

Discovering Non-monotonic Autoregressive Orderings with Variational Inference Description This package contains the source code implementation of the

Xuanlin (Simon) Li 10 Dec 29, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
code for our BMVC 2021 paper "HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification"

HCV_IIRC code for our BMVC 2021 paper HCV: Hierarchy-Consistency Verification for Incremental Implicitly-Refined Classification by Kai Wang, Xialei Li

kai wang 13 Oct 03, 2022
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022