TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

Overview

ICNet_tensorflow

HitCount

This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images," by Hengshuang Zhao, and et. al. (ECCV'18).

The model generates segmentation mask for every pixel in the image. It's based on the ResNet50 with totally three branches as auxiliary paths, see architecture below for illustration.

We provide both training and inference code in this repo. The pre-trained models we provided are converted from caffe weights in Official Implementation.

News (2018.10.22 updated):

Now you can try ICNet on your own image online using ModelDepot live demo!

Table Of Contents

Environment Setup

pip install tensorflow-gpu opencv-python jupyter matplotlib tqdm

Download Weights

We provide pre-trained weights for cityscapes and ADE20k dataset. You can download the weights easily use following command,

python script/download_weights.py --dataset cityscapes (or ade20k)

Download Dataset (Optional)

If you want to evaluate the provided weights or keep fine-tuning on cityscapes and ade20k dataset, you need to download them using different methods.

ADE20k dataset

Simply run following command:

bash script/download_ADE20k.sh

Cityscapes dataset

You need to download Cityscape dataset from Official website first (you'll need to request access which may take couple of days).

Then convert downloaded dataset ground truth to training format by following instructions to install cityscapesScripts then running these commands:

export CITYSCAPES_DATASET=<cityscapes dataset path>
csCreateTrainIdLabelImgs

Get started!

This repo provide three phases with full documented, which means you can try train/evaluate/inference on your own.

Inference on your own image

demo.ipynb show the easiest example to run semantic segmnetation on your own image.

In the end of demo.ipynb, you can test the speed of ICNet.

Here are some results run on Titan Xp with high resolution images (1024x2048):
~0.037(s) per images, which means we can get ~27 fps (nearly same as described in paper).

Evaluate on cityscapes/ade20k dataset

To get the results, you need to follow the steps metioned above to download dataset first.
Then you need to change the data_dir path in config.py.

CITYSCAPES_DATA_DIR = '/data/cityscapes_dataset/cityscape/'
ADE20K_DATA_DIR = './data/ADEChallengeData2016/'

Cityscapes

Perform in single-scaled model on the cityscapes validation dataset. (We have sucessfully re-produced the performance same to caffe framework).

Model Accuracy Model Accuracy
train_30k   67.26%/67.7% train_30k_bn 67.31%/67.7%
trainval_90k 80.90% trainval_90k_bn 0.8081%

Run following command to get evaluation results,

python evaluate.py --dataset=cityscapes --filter-scale=1 --model=trainval

List of Args:

--model=train       - To select train_30k model
--model=trainval    - To select trainval_90k model
--model=train_bn    - To select train_30k_bn model
--model=trainval_bn - To select trainval_90k_bn model

ADE20k

Reach 32.25%mIoU on ADE20k validation set.

python evaluate.py --dataset=ade20k --filter-scale=2 --model=others

Note: to use model provided by us, set filter-scale to 2.

Training on your own dataset

This implementation is different from the details descibed in ICNet paper, since I did not re-produce model compression part. Instead, we train on the half kernels directly.

In orignal paper, the authod trained the model in full kernels and then performed model-pruning techique to kill half kernels. Here we use --filter-scale to denote whether pruning or not.

For example, --filter-scale=1 <-> [h, w, 32] and --filter-scale=2 <-> [h, w, 64].

Step by Step

1. Change the configurations in utils/config.py.

cityscapes_param = {'name': 'cityscapes',
                    'num_classes': 19,
                    'ignore_label': 255,
                    'eval_size': [1025, 2049],
                    'eval_steps': 500,
                    'eval_list': CITYSCAPES_eval_list,
                    'train_list': CITYSCAPES_train_list,
                    'data_dir': CITYSCAPES_DATA_DIR}

2. Set Hyperparameters in train.py,

class TrainConfig(Config):
    def __init__(self, dataset, is_training,  filter_scale=1, random_scale=None, random_mirror=None):
        Config.__init__(self, dataset, is_training, filter_scale, random_scale, random_mirror)

    # Set pre-trained weights here (You can download weight using `python script/download_weights.py`) 
    # Note that you need to use "bnnomerge" version.
    model_weight = './model/cityscapes/icnet_cityscapes_train_30k_bnnomerge.npy'
    
    # Set hyperparameters here, you can get much more setting in Config Class, see 'utils/config.py' for details.
    LAMBDA1 = 0.16
    LAMBDA2 = 0.4
    LAMBDA3 = 1.0
    BATCH_SIZE = 4
    LEARNING_RATE = 5e-4

3. Run following command and decide whether to update mean/var or train beta/gamma variable.

python train.py --update-mean-var --train-beta-gamma \
      --random-scale --random-mirror --dataset cityscapes --filter-scale 2

Note: Be careful to use --update-mean-var! Use this flag means you will update the moving mean and moving variance in batch normalization layer. This need large batch size, otherwise it will lead bad results.

Result (inference with my own data)

Citation

@article{zhao2017icnet,
  author = {Hengshuang Zhao and
            Xiaojuan Qi and
            Xiaoyong Shen and
            Jianping Shi and
            Jiaya Jia},
  title = {ICNet for Real-Time Semantic Segmentation on High-Resolution Images},
  journal={arXiv preprint arXiv:1704.08545},
  year = {2017}
}

@inproceedings{zhou2017scene,
    title={Scene Parsing through ADE20K Dataset},
    author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    year={2017}
}

@article{zhou2016semantic,
  title={Semantic understanding of scenes through the ade20k dataset},
  author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
  journal={arXiv preprint arXiv:1608.05442},
  year={2016}
}

If you find this implementation or the pre-trained models helpful, please consider to cite:

@misc{Yang2018,
  author = {Hsuan-Kung, Yang},
  title = {ICNet-tensorflow},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/hellochick/ICNet-tensorflow}}
}
Owner
HsuanKung Yang
HsuanKung Yang
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
Starter kit for getting started in the Music Demixing Challenge.

Music Demixing Challenge - Starter Kit 👉 Challenge page This repository is the Music Demixing Challenge Submission template and Starter kit! Clone th

AIcrowd 106 Dec 20, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
A simple Tensorflow based library for deep and/or denoising AutoEncoder.

libsdae - deep-Autoencoder & denoising autoencoder A simple Tensorflow based library for Deep autoencoder and denoising AE. Library follows sklearn st

Rajarshee Mitra 147 Nov 18, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
TensorFlow, PyTorch and Numpy layers for generating Orthogonal Polynomials

OrthNet TensorFlow, PyTorch and Numpy layers for generating multi-dimensional Orthogonal Polynomials 1. Installation 2. Usage 3. Polynomials 4. Base C

Chuan 29 May 25, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022