Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Overview

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

This is the code repository for Advanced Deep Learning with TensoFlow 2 and Keras, published by Packt. It contains all the supporting project files necessary to work through the book from start to finish.

Please note that the code examples have been updated to support TensorFlow 2.0 Keras API only.

About the Book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects.

Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques.

Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance.

Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.

Related Products

Installation

It is recommended to run within conda enviroment. Pls download Anacoda from: Anaconda. To install anaconda:

sh

A machine with at least 1 NVIDIA GPU (1060 or better) is required. The code examples have been tested on 1060, 1080Ti, RTX 2080Ti, V100, RTX Quadro 8000 on Ubuntu 18.04 LTS. Below is a rough guide to install NVIDIA driver and CuDNN to enable GPU support.

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt update

sudo ubuntu-drivers autoinstall

sudo reboot

nvidia-smi

At the time of writing, nvidia-smishows the NVIDIA driver version is 440.64 and CUDA version is 10.2.

We are almost there. The last set of packages must be installed as follows. Some steps might require sudo access.

conda create --name packt

conda activate packt

cd

git clone https://github.com/PacktPublishing/Advanced-Deep-Learning-with-Keras

cd Advanced-Deep-Learning-with-Keras

pip install -r requirements.txt

sudo apt-get install python-pydot

sudo apt-get install ffmpeg

Test if a simple model can be trained without errors:

cd chapter1-keras-quick-tour

python3 mlp-mnist-1.3.2.py

The final output shows the accuracy of the trained model on MNIST test dataset is about 98.2%.

Alternative TensorFlow Installation

If you are having problems with CUDA libraries (ie tf could not load or find libcudart.so.10.X), TensorFlow and CUDA libraries can be installed together using conda:

pip uninstall tensorflow-gpu
conda install -c anaconda tensorflow-gpu

Advanced Deep Learning with TensorFlow 2 and Keras code examples used in the book.

Chapter 1 - Introduction

  1. MLP on MNIST
  2. CNN on MNIST
  3. RNN on MNIST

Chapter 2 - Deep Networks

  1. Functional API on MNIST
  2. Y-Network on MNIST
  3. ResNet v1 and v2 on CIFAR10
  4. DenseNet on CIFAR10

Chapter 3 - AutoEncoders

  1. Denoising AutoEncoders

Sample outputs for random digits:

Random Digits

  1. Colorization AutoEncoder

Sample outputs for random cifar10 images:

Colorized Images

Chapter 4 - Generative Adversarial Network (GAN)

  1. Deep Convolutional GAN (DCGAN)

Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." arXiv preprint arXiv:1511.06434 (2015).

Sample outputs for random digits:

Random Digits

  1. Conditional (GAN)

Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 5 - Improved GAN

  1. Wasserstein GAN (WGAN)

Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein GAN." arXiv preprint arXiv:1701.07875 (2017).

Sample outputs for random digits:

Random Digits

  1. Least Squares GAN (LSGAN)

Mao, Xudong, et al. "Least squares generative adversarial networks." 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.

Sample outputs for random digits:

Random Digits

  1. Auxiliary Classfier GAN (ACGAN)

Odena, Augustus, Christopher Olah, and Jonathon Shlens. "Conditional image synthesis with auxiliary classifier GANs. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, PMLR 70, 2017."

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 6 - GAN with Disentangled Latent Representations

  1. Information Maximizing GAN (InfoGAN)

Chen, Xi, et al. "Infogan: Interpretable representation learning by information maximizing generative adversarial nets." Advances in Neural Information Processing Systems. 2016.

Sample outputs for digits 0 to 9:

Zero to Nine

  1. Stacked GAN

Huang, Xun, et al. "Stacked generative adversarial networks." IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Vol. 2. 2017

Sample outputs for digits 0 to 9:

Zero to Nine

Chapter 7 - Cross-Domain GAN

  1. CycleGAN

Zhu, Jun-Yan, et al. "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks." 2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017.

Sample outputs for random cifar10 images:

Colorized Images

Sample outputs for MNIST to SVHN:

MNIST2SVHN

Chapter 8 - Variational Autoencoders (VAE)

  1. VAE MLP MNIST
  2. VAE CNN MNIST
  3. Conditional VAE and Beta VAE

Kingma, Diederik P., and Max Welling. "Auto-encoding Variational Bayes." arXiv preprint arXiv:1312.6114 (2013).

Sohn, Kihyuk, Honglak Lee, and Xinchen Yan. "Learning structured output representation using deep conditional generative models." Advances in Neural Information Processing Systems. 2015.

I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner. β-VAE: Learning basic visual concepts with a constrained variational framework. ICLR, 2017.

Generated MNIST by navigating the latent space:

MNIST

Chapter 9 - Deep Reinforcement Learning

  1. Q-Learning
  2. Q-Learning on Frozen Lake Environment
  3. DQN and DDQN on Cartpole Environment

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529

DQN on Cartpole Environment:

Cartpole

Chapter 10 - Policy Gradient Methods

  1. REINFORCE, REINFORCE with Baseline, Actor-Critic, A2C

Sutton and Barto, Reinforcement Learning: An Introduction

Mnih, Volodymyr, et al. "Asynchronous methods for deep reinforcement learning." International conference on machine learning. 2016.

Policy Gradient on MountainCar Continuous Environment:

Car

Chapter 11 - Object Detection

  1. Single-Shot Detection

Single-Shot Detection on 3 Objects SSD

Chapter 12 - Semantic Segmentation

  1. FCN

  2. PSPNet

Semantic Segmentation

Semantic Segmentation

Chapter 13 - Unsupervised Learning using Mutual Information

  1. Invariant Information Clustering

  2. MINE: Mutual Information Estimation

MINE MINE

Citation

If you find this work useful, please cite:

@book{atienza2020advanced,
  title={Advanced Deep Learning with TensorFlow 2 and Keras: Apply DL, GANs, VAEs, deep RL, unsupervised learning, object detection and segmentation, and more},
  author={Atienza, Rowel},
  year={2020},
  publisher={Packt Publishing Ltd}
}
Owner
Packt
Providing books, eBooks, video tutorials, and articles for IT developers, administrators, and users.
Packt
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Benchmarking the robustness of Spatial-Temporal Models

Benchmarking the robustness of Spatial-Temporal Models This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal

Yi Chenyu Ian 15 Dec 16, 2022
Implementation of the CVPR 2021 paper "Online Multiple Object Tracking with Cross-Task Synergy"

Online Multiple Object Tracking with Cross-Task Synergy This repository is the implementation of the CVPR 2021 paper "Online Multiple Object Tracking

54 Oct 15, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
Bayesian Neural Networks in PyTorch

We present the new scheme to compute Monte Carlo estimator in Bayesian VI settings with almost no memory cost in GPU, regardles of the number of sampl

Jurijs Nazarovs 7 May 03, 2022
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
ML for NLP and Computer Vision.

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Katana ML 2 Nov 28, 2021
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022