[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

Overview

OpenCOOD

Documentation Status License: MIT

OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV2V.

News

03/17/2022: V2VNet is supported and the results/trained model are provided in the benchmark table.

03/10/2022: Results and pretrained weights for Attentive Fusion with compression are provided.

02/20/2022: F-Cooper now is supported and the results/traiend model can be found in the benchmark table.

01/31/2022: Our paper OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Perception with Vehicle-to-Vehicle Communication has been accpted by ICRA2022!

09/21/2021: OPV2V dataset is public available: https://mobility-lab.seas.ucla.edu/opv2v/

Features

  • Provide easy data API for the Vehicle-to-Vehicle (V2V) multi-modal perception dataset OPV2V

    It currently provides easy API to load LiDAR data from multiple agents simultaneously in a structured format and convert to PyTorch Tesnor directly for model use.

  • Provide multiple SOTA 3D detection backbone

    It supports state-of-the-art LiDAR detector including PointPillar, Pixor, VoxelNet, and SECOND.

  • Support most common fusion strategies

    It includes 3 most common fusion strategies: early fusion, late fusion, and intermediate fusion across different agents.

  • Support several SOTA multi-agent visual fusion model

    It supports the most recent multi-agent perception algorithms (currently up to Sep. 2021) including Attentive Fusion, Cooper (early fusion), F-Cooper, V2VNet etc. We will keep updating the newest algorithms.

  • Provide a convenient log replay toolbox for OPV2V dataset (coming soon)

    It also provides an easy tool to replay the original OPV2V dataset. More importantly, it allows users to enrich the original dataset by attaching new sensors or define additional tasks (e.g. tracking, prediction) without changing the events in the initial dataset (e.g. positions and number of all vehicles, traffic speed).

Data Downloading

All the data can be downloaded from google drive. If you have a good internet, you can directly download the complete large zip file such as train.zip. In case you suffer from downloading large fiels, we also split each data set into small chunks, which can be found in the directory ending with _chunks, such as train_chunks. After downloading, please run the following command to each set to merge those chunks together:

cat train.zip.parta* > train.zip
unzip train.zip

Installation

Please refer to data introduction and installation guide to prepare data and install OpenCOOD. To see more details of OPV2V data, please check our website.

Quick Start

Data sequence visualization

To quickly visualize the LiDAR stream in the OPV2V dataset, first modify the validate_dir in your opencood/hypes_yaml/visualization.yaml to the opv2v data path on your local machine, e.g. opv2v/validate, and the run the following commond:

cd ~/OpenCOOD
python opencood/visualization/vis_data_sequence.py [--color_mode ${COLOR_RENDERING_MODE}]

Arguments Explanation:

  • color_mode : str type, indicating the lidar color rendering mode. You can choose from 'constant', 'intensity' or 'z-value'.

Train your model

OpenCOOD uses yaml file to configure all the parameters for training. To train your own model from scratch or a continued checkpoint, run the following commonds:

python opencood/tools/train.py --hypes_yaml ${CONFIG_FILE} [--model_dir  ${CHECKPOINT_FOLDER}]

Arguments Explanation:

  • hypes_yaml: the path of the training configuration file, e.g. opencood/hypes_yaml/second_early_fusion.yaml, meaning you want to train an early fusion model which utilizes SECOND as the backbone. See Tutorial 1: Config System to learn more about the rules of the yaml files.
  • model_dir (optional) : the path of the checkpoints. This is used to fine-tune the trained models. When the model_dir is given, the trainer will discard the hypes_yaml and load the config.yaml in the checkpoint folder.

Test the model

Before you run the following command, first make sure the validation_dir in config.yaml under your checkpoint folder refers to the testing dataset path, e.g. opv2v_data_dumping/test.

python opencood/tools/inference.py --model_dir ${CHECKPOINT_FOLDER} --fusion_method ${FUSION_STRATEGY} [--show_vis] [--show_sequence]

Arguments Explanation:

  • model_dir: the path to your saved model.
  • fusion_method: indicate the fusion strategy, currently support 'early', 'late', and 'intermediate'.
  • show_vis: whether to visualize the detection overlay with point cloud.
  • show_sequence : the detection results will visualized in a video stream. It can NOT be set with show_vis at the same time.

The evaluation results will be dumped in the model directory.

Benchmark and model zoo

Results on OPV2V dataset ([email protected] for no-compression/ compression)

Backbone Fusion Strategy Bandwidth (Megabit),
before/after compression
Default Towns Culver City Download
Naive Late PointPillar Late 0.024/0.024 0.781/0.781 0.668/0.668 url
Cooper PointPillar Early 7.68/7.68 0.800/x 0.696/x url
Attentive Fusion PointPillar Intermediate 126.8/1.98 0.815/0.810 0.735/0.731 url
F-Cooper PointPillar Intermediate 72.08/1.12 0.790/0.788 0.728/0.726 url
V2VNet PointPillar Intermediate 72.08/1.12 0.822/0.814 0.734/0.729 url
Naive Late VoxelNet Late 0.024/0.024 0.738/0.738 0.588/0.588 url
Cooper VoxelNet Early 7.68/7.68 0.758/x 0.677/x url
Attentive Fusion VoxelNet Intermediate 576.71/1.12 0.864/0.852 0.775/0.746 url
Naive Late SECOND Late 0.024/0.024 0.775/0.775 0.682/0.682 url
Cooper SECOND Early 7.68/7.68 0.813/x 0.738/x url
Attentive SECOND Intermediate 63.4/0.99 0.826/0.783 0.760/0.760 url
Naive Late PIXOR Late 0.024/0.024 0.578/0.578 0.360/0.360 url
Cooper PIXOR Early 7.68/7.68 0.678/x 0.558/x url
Attentive PIXOR Intermediate 313.75/1.22 0.687/0.612 0.546/0.492 url

Note:

  • We suggest using PointPillar as the backbone when you are creating your method and try to compare with our benchmark, as we implement most of the SOTA methods with this backbone only.
  • We assume the transimssion rate is 27Mbp/s. Considering the frequency of LiDAR is 10Hz, the bandwidth requirement should be less than 2.7Mbp to avoid severe delay.
  • A 'x' in the benchmark table represents the bandwidth requirement is too large, which can not be considered to employ in practice.

Tutorials

We have a series of tutorials to help you understand OpenCOOD more. Please check the series of our tutorials.

Citation

If you are using our OpenCOOD framework or OPV2V dataset for your research, please cite the following paper:

@inproceedings{xu2022opencood,
 author = {Runsheng Xu, Hao Xiang, Xin Xia, Xu Han, Jinlong Li, Jiaqi Ma},
 title = {OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Perception with Vehicle-to-Vehicle Communication},
 booktitle = {2022 IEEE International Conference on Robotics and Automation (ICRA)},
 year = {2022}}

Also, under this LICENSE, OpenCOOD is for non-commercial research only. Researchers can modify the source code for their own research only. Contracted work that generates corporate revenues and other general commercial use are prohibited under this LICENSE. See the LICENSE file for details and possible opportunities for commercial use.

Future Plans

  • Provide camera APIs for OPV2V
  • Provide the log replay toolbox
  • Implement F-Cooper
  • Implement V2VNet
  • Implement DiscoNet

Contributors

OpenCOOD is supported by the UCLA Mobility Lab. We also appreciate the great work from OpenPCDet, as part of our works use their framework.

Lab Principal Investigator:

Project Lead:

Owner
Runsheng Xu
UCLA PHD candidate, Former Senior Machine Learning Engineer in Mercedes Benz R&D North America
Runsheng Xu
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Synthesize photos from PhotoDNA using machine learning 🌱

Ribosome Synthesize photos from PhotoDNA. See the blog post for more information. Installation Dependencies You can install Python dependencies using

Anish Athalye 112 Nov 23, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling"

Official Code Release for "TIP-Adapter: Training-free clIP-Adapter for Better Vision-Language Modeling" Pipeline of Tip-Adapter Tip-Adapter can provid

peng gao 187 Dec 28, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022
Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

End-to-End Object Detection with Learnable Proposal, CVPR2021

Peize Sun 1.2k Dec 27, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Code Repository for Liquid Time-Constant Networks (LTCs)

Liquid time-constant Networks (LTCs) [Update] A Pytorch version is added in our sister repository: https://github.com/mlech26l/keras-ncp This is the o

Ramin Hasani 553 Dec 27, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep.

HODEmu HODEmu, is both an executable and a python library that is based on Ragagnin 2021 in prep. and emulates satellite abundance as a function of co

Antonio Ragagnin 1 Oct 13, 2021
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
The repository contain code for building compiler using puthon.

Building Compiler This is a python implementation of JamieBuild's "Super Tiny Compiler" Overview JamieBuilds developed a wonderfully educative compile

Shyam Das Shrestha 1 Nov 21, 2021
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022