Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

Related tags

Deep LearningIC-Conv
Overview

IC-Conv

This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search.

Getting Started

Download ImageNet pre-trained checkpoints.

Extract the file to get the following directory tree

|-- README.md
|-- ckpt
|   |-- detection
|   |-- human_pose
|   |-- segmentation
|-- config
|-- model
|-- pattern_zoo

Easy Use

The current implementation is coupled to specific downstream tasks. OpenMMLab users can quickly use IC-Conv in the following simple ways.

from models import IC_ResNet
import torch
net = IC_ResNet(depth=50,pattern_path='pattern_zoo/detection/ic_r50_k9.json')
net.eval()
inputs = torch.rand(1, 3, 32, 32)
outputs = net.forward(inputs)

For 2d Human Pose Estimation using MMPose

  1. Copying the config files to the config path of mmpose, such as
cp config/human_pose/ic_res50_k13_coco_640x640.py your_mmpose_path/mmpose/configs/bottom_up/resnet/coco/ic_res50_k13_coco_640x640.py
  1. Copying the inception conv files to the model path of mmpose,
cp model/ic_conv2d.py your_mmpose_path/mmpose/mmpose/models/backbones/ic_conv2d.py
cp model/ic_resnet.py your_mmpose_path/mmpose/mmpose/models/backbones/ic_resnet.py
  1. Running it directly like MMPose.

Model Zoo

We provided the pre-trained weights of IC-ResNet-50, IC-ResNet-101and IC-ResNeXt-101 (32x4d) on ImageNet and the weights trained on specific tasks.

For users with limited computing power, you can directly reuse our provided IC-Conv and ImageNet pre-training weights for detection, segmentation, and 2d human pose estimation tasks on other datasets.

Attentions: The links in the tables below are relative paths. Therefore, you should clone the repository and download checkpoints.

Object Detection

Detector Backbone Lr AP dilation_pattern checkpoint
Faster-RCNN-FPN IC-R50 1x 38.9 pattern ckpt/imagenet_retrain_ckpt
Faster-RCNN-FPN IC-R101 1x 41.9 pattern ckpt/imagenet_retrain_ckpt
Faster-RCNN-FPN IC-X101-32x4d 1x 42.1 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R50 1x 42.4 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R101 1x 45.0 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-X101-32x4d 1x 45.7 pattern ckpt/imagenet_retrain_ckpt

Instance Segmentation

Detector Backbone Lr box AP mask AP dilation_pattern checkpoint
Mask-RCNN-FPN IC-R50 1x 40.0 35.9 pattern ckpt/imagenet_retrain_ckpt
Mask-RCNN-FPN IC-R101 1x 42.6 37.9 pattern ckpt/imagenet_retrain_ckpt
Mask-RCNN-FPN IC-X101-32x4d 1x 43.4 38.4 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R50 1x 43.4 36.8 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-R101 1x 45.7 38.7 pattern ckpt/imagenet_retrain_ckpt
Cascade-RCNN-FPN IC-X101-32x4d 1x 46.4 39.1 pattern ckpt/imagenet_retrain_ckpt

2d Human Pose Estimation

We adjust the learning rate of resnet backbone in MMPose and get better baseline results. Please see the specific config files in config/human_pose/.

Results on COCO val2017 without multi-scale test
Backbone Input Size AP dilation_pattern checkpoint
R50(mmpose) 640x640 47.9 ~ ~
R50 640x640 51.0 ~ ~
IC-R50 640x640 62.2 pattern ckpt/imagenet_retrain_ckpt
R101 640x640 55.5 ~ ~
IC-R101 640x640 63.3 pattern ckpt/imagenet_retrain_ckpt
Results on COCO val2017 with multi-scale test. 3 default scales ([2, 1, 0.5]) are used
Backbone Input Size AP
R50(mmpose) 640x640 52.5
R50 640x640 55.8
IC-R50 640x640 65.8
R101 640x640 60.2
IC-R101 640x640 68.5

Acknowledgement

The human pose estimation experiments are built upon MMPose.

Citation

If our paper helps your research, please cite it in your publications:

@article{liu2020inception,
 title={Inception Convolution with Efficient Dilation Search},
 author={Liu, Jie and Li, Chuming and Liang, Feng and Lin, Chen and Sun, Ming and Yan, Junjie and Ouyang, Wanli and Xu, Dong},
 journal={arXiv preprint arXiv:2012.13587},
 year={2020}
}
Owner
Jie Liu
Jie Liu
We have made you a wrapper you can't refuse

We have made you a wrapper you can't refuse We have a vibrant community of developers helping each other in our Telegram group. Join us! Stay tuned fo

20.6k Jan 09, 2023
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Open-source python package for the extraction of Radiomics features from 2D and 3D images and binary masks.

pyradiomics v3.0.1 Build Status Linux macOS Windows Radiomics feature extraction in Python This is an open-source python package for the extraction of

Artificial Intelligence in Medicine (AIM) Program 842 Dec 28, 2022
PROJECT - Az Residential Real Estate Analysis

AZ RESIDENTIAL REAL ESTATE ANALYSIS -Decided on libraries to import. Includes pa

2 Jul 05, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Introduction 1. Usage (For MSS) 1.1 Prepare running environment 1.2 Use pretrained model 1.3 Train new MSS models from scratch 1.3.1 How to train 1.3.

Leo 100 Dec 25, 2022
Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

THUNLP 5 Jun 16, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
StyleGAN-Human: A Data-Centric Odyssey of Human Generation

StyleGAN-Human: A Data-Centric Odyssey of Human Generation Abstract: Unconditional human image generation is an important task in vision and graphics,

stylegan-human 762 Jan 08, 2023