Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

Overview

MetaAdaptRank

This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision.

CONTACT

For any question, please contact Si Sun by email [email protected] (respond to emails more quickly), we will try our best to solve :)

QUICKSTART

python 3.7
Pytorch 1.5.0

0/ Data Preparation

First download and prepare the following data into the data folder:

1 Contrastive Supervision Synthesis

1.1 Source-domain NLG training

  • We train two query generators (QG & ContrastQG) with the MS MARCO dataset using train_nlg.sh in the run_shells folder:

    bash prepro_nlg_dataset.sh
    
  • Optional arguments:

    --generator_mode            choices=['qg', 'contrastqg']
    --pretrain_generator_type   choices=['t5-small', 't5-base']
    --train_file                The path to the source-domain nlg training dataset
    --save_dir                  The path to save the checkpoints data; default: ../results
    

1.2 Target-domain NLG inference

  • The whole nlg inference pipline contains five steps:

    • 1.2.1/ Data preprocess
    • 1.2.2/ Seed query generation
    • 1.2.3/ BM25 subset retrieval
    • 1.2.4/ Contrastive doc pairs sampling
    • 1.2.5/ Contrastive query generation
  • 1.2.1/ Data preprocess. convert target-domain documents into the nlg format using prepro_nlg_dataset.sh in the preprocess folder:

    bash prepro_nlg_dataset.sh
    
  • Optional arguments:

    --dataset_name          choices=['clueweb09', 'robust04', 'trec-covid']
    --input_path            The path to the target dataset
    --output_path           The path to save the preprocess data; default: ../data/prepro_target_data
    
  • 1.2.2/ Seed query generation. utilize the trained QG model to generate seed queries for each target documents using nlg_inference.sh in the run_shells folder:

    bash nlg_inference.sh
    
  • Optional arguments:

    --generator_mode            choices='qg'
    --pretrain_generator_type   choices=['t5-small', 't5-base']
    --target_dataset_name       choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_load_dir        The path to the pretrained QG checkpoints.
    
  • 1.2.3/ BM25 subset retrieval. utilize BM25 to retrieve document subset according to the seed queries using do_subset_retrieve.sh in the bm25_retriever folder:

    bash do_subset_retrieve.sh
    
  • Optional arguments:

    --dataset_name          choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_folder      choices=['t5-small', 't5-base']
    
  • 1.2.4/ Contrastive doc pairs sampling. pairwise sample contrastive doc pairs from the BM25 retrieved subset using sample_contrast_pairs.sh in the preprocess folder:

    bash sample_contrast_pairs.sh
    
  • Optional arguments:

    --dataset_name          choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_folder      choices=['t5-small', 't5-base']
    
  • 1.2.5/ Contrastive query generation. utilize the trained ContrastQG model to generate new queries based on contrastive document pairs using nlg_inference.sh in the run_shells folder:

    bash nlg_inference.sh
    
  • Optional arguments:

    --generator_mode            choices='contrastqg'
    --pretrain_generator_type   choices=['t5-small', 't5-base']
    --target_dataset_name       choices=['clueweb09', 'robust04', 'trec-covid']
    --generator_load_dir        The path to the pretrained ContrastQG checkpoints.
    

2 Meta Learning to Reweight

2.1 Data Preprocess

  • Prepare the contrastive synthetic supervision data (CTSyncSup) into the data/synthetic_data folder.

    • CTSyncSup_clueweb09
    • CTSyncSup_robust04
    • CTSyncSup_trec-covid

    >> example data format

  • Preprocess the target-domain datasets into the 5-fold cross-validation format using run_cv_preprocess.sh in the preprocess folder:

    bash run_cv_preprocess.sh
    
  • Optional arguments:

    --dataset_class         choices=['clueweb09', 'robust04', 'trec-covid']
    --input_path            The path to the target dataset
    --output_path           The path to save the preprocess data; default: ../data/prepro_target_data
    

2.2 Train and Test Models

  • The whole process of training and testing MetaAdaptRank contains three steps:

    • 2.2.1/ Meta-pretraining. The model is trained on synthetic weak supervision data, where the synthetic data are reweighted using meta-learning. The training fold of the target dataset is considered as target data that guides meta-reweighting.

    • 2.2.2/ Fine-tuning. The meta-pretrained model is continuously fine-tuned on the training folds of the target dataset.

    • 2.2.3/ Ensemble and Coor-Ascent. Coordinate Ascent is used to combine the last representation layers of all fine-tuned models, as LeToR features, with the retrieval scores from the base retriever.

  • 2.2.1/ Meta-pretraining using train_meta_bert.sh in the run_shells folder:

    bash train_meta_bert.sh
    

    Optional arguments for meta-pretraining:

    --cv_number             choices=[0, 1, 2, 3, 4]
    --pretrain_model_type   choices=['bert-base-cased', 'BiomedNLP-PubMedBERT-base-uncased-abstract']
    --train_dir             The path to the synthetic weak supervision data
    --target_dir            The path to the target dataset
    --save_dir              The path to save the output files and checkpoints; default: ../results
    

    Complete optional arguments can be seen in config.py in the scripts folder.

  • 2.2.2/ Fine-tuning using train_metafine_bert.sh in the run_shells folder:

    bash train_metafine_bert.sh
    

    Optional arguments for fine-tuning:

    --cv_number             choices=[0, 1, 2, 3, 4]
    --pretrain_model_type   choices=['bert-base-cased', 'BiomedNLP-PubMedBERT-base-uncased-abstract']
    --train_dir             The path to the target dataset
    --checkpoint_folder     The path to the checkpoint of the meta-pretrained model
    --save_dir              The path to save output files and checkpoint; default: ../results
    
  • 2.2.3/ Testing the fine-tuned model to collect LeToR features through test.sh in the run_shells folder:

    bash test.sh
    

    Optional arguments for testing:

    --cv_number             choices=[0, 1, 2, 3, 4]
    --pretrain_model_type   choices=['bert-base-cased', 'BiomedNLP-PubMedBERT-base-uncased-abstract']
    --target_dir            The path to the target evaluation dataset
    --checkpoint_folder     The path to the checkpoint of the fine-tuned model
    --save_dir              The path to save output files and the **features** file; default: ../results
    
  • 2.2.4/ Ensemble. Train and test five models for each fold of the target dataset (5-fold cross-validation), and then ensemble and convert their output features to coor-ascent format using combine_features.sh in the ensemble folder:

    bash combine_features.sh
    

    Optional arguments for ensemble:

    --qrel_path             The path to the qrels of the target dataset
    --result_fold_1         The path to the testing result folder of the first fold model
    --result_fold_2         The path to the testing result folder of the second fold model
    --result_fold_3         The path to the testing result folder of the third fold model
    --result_fold_4         The path to the testing result folder of the fourth fold model
    --result_fold_5         The path to the testing result folder of the fifth fold model
    --save_dir              The path to save the ensembled `features.txt` file; default: ../combined_features
    
  • 2.2.5/ Coor-Ascent. Run coordinate ascent using run_ranklib.sh in the ensemble folder:

    bash run_ranklib.sh
    

    Optional arguments for coor-ascent:

    --qrel_path             The path to the qrels of the target dataset
    --ranklib_path          The path to the ensembled features.
    

    The final evaluation results will be output in the ranklib_path.

Results

All TREC files listed in this paper can be found in Tsinghua Cloud.

Owner
THUNLP
Natural Language Processing Lab at Tsinghua University
THUNLP
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021)

Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion (CVPR 2021) This repository is for BAAF-Net introduce

90 Dec 29, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021은 ‘2021 인공지능 학습용 데이터 구축사업’을 통해 만들어진 학습용 데이터를 활용하여 당뇨병을 효과적으로 예측할 수 있는가에 대한 A

2 Dec 27, 2021
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Pseudo-Visual Speech Denoising

Pseudo-Visual Speech Denoising This code is for our paper titled: Visual Speech Enhancement Without A Real Visual Stream published at WACV 2021. Autho

Sindhu 94 Oct 22, 2022
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
Решения, подсказки, тесты и утилиты для тренировки по алгоритмам от Яндекса.

Решения и подсказки к тренировке по алгоритмам от Яндекса Что есть внутри Решения с подсказками и комментариями; рекомендую сначала смотреть md файл п

Yankovsky Andrey 50 Dec 26, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Hierarchical reinforcement learning with Timed Subgoals (HiTS) This repository contains code for reproducing experiments from our paper "Hierarchical

Autonomous Learning Group 21 Dec 03, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

SegPC-2021 This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by

Datascience IIT-ISM 13 Dec 14, 2022