Code for the paper: Hierarchical Reinforcement Learning With Timed Subgoals, published at NeurIPS 2021

Related tags

Deep LearningHiTS
Overview

Hierarchical reinforcement learning with Timed Subgoals (HiTS)

This repository contains code for reproducing experiments from our paper "Hierarchical reinforcement learning with Timed Subgoals". The implementation of the Hierarchical reinforcement learning with Timed Subgoals (HiTS) algorithm can be found in the Graph-RL repository.

HiTS enables sample-efficient learning in sparse-reward, long-horizong tasks. In particular, it extends subgoal-based hierarchical reinforcement learning to environments with dynamic elements which are, most of the time, beyond the control of the agent. Due to the use of timed subgoals and hindsight action relabeling the higher level sees transitions that are consistent with a stationary effective environment. As a result both levels in the hierarchy can learn concurrently and efficiently.

The three benchmark tasks in dynamic environments from the paper are contained in the dynamic-rl-benchmarks repository. If you are interested in applying HiTS to a different task, then this demo in the Graph-RL repository is the best place to start.

Installation

We recommend using a virtual environment with python3.7 or higher. Make sure pip is up to date. In the root directory of the repository execute:

pip install -r requirements.txt

Usage

To render episodes with one of the pretrained policies execute in the root directory:

python -m scripts.run.render --algo hits --env Platforms

Available algorithms:

  • hits
  • hac
  • sac

Available environments:

  • AntFourRooms
  • Drawbridge
  • Pendulum
  • Platforms
  • Tennis2D
  • UR5Reacher

A policy can be be trained from scratch by running:

python -m scripts.run.train --algo hits --env Platforms

To render episodes with a newly trained policy use:

python -m scripts.run.render --algo hits --env Platforms --newly_trained

To render an episode with the stochastic policy used during training:

python -m scripts.run.render --algo hits --env Platforms --newly_trained --stochastic

Hyperparameters and seeds can be found in the graph_params.json files in the data directory. The key level_params_list contains a list of the hyperparameters of all levels, starting with the lowest level.

How to cite

Please use the following BibTex entry.

@article{gurtler2021hierarchical,
  title={Hierarchical Reinforcement Learning with Timed Subgoals},
  author={G{\"u}rtler, Nico and B{\"u}chler, Dieter and Martius, Georg},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Autonomous Learning Group
Autonomous Learning Group
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023