Official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation

Overview

SegPC-2021

This is the official repository for the ISBI 2021 paper Transformer Assisted Convolutional Neural Network for Cell Instance Segmentation by Deepanshu Pandey, Pradyumna Gupta, Sumit Bhattacharya, Aman Sinha, Rohit Agarwal.

About the Challenge

Website link: https://segpc-2021.grand-challenge.org/SegPC-2021/

Overview: In recent years, with the advancement of Deep Learning, there has been tremendous efforts in the application of image processing to build AI based models for cancer diagnosis. This challenge is also one such effort. It deals with the segmentation of plasma cell cancer, namely, Multiple Myeloma (MM), which is a type of blood cancer. We are provided with the stained color normalization imag of the cells.

Image distribution: The cells may have different structures because:

  • There is a varying amount of nucleus and cytoplasm from one cell to another.
  • The cells may appear in clusters or as isolated single cells.
  • The cells appearing in clusters may have three cases -
    • Cytoplasm of two cells touch each other,
    • The cytoplasm of one cell and nucleus of another touch each other,
    • nucleus of cells touch each other. Since the cytoplasm and nucleus have different colors, the segmentation of cells may pose challenges.
  • There may be multiple cells touching each other in the cluster.
  • There may be unstained cells, say a red blood cell underneath the cell of interest, changing its color and shade.
  • The cytoplasm of a cell may be close to the background of the whole image, making it difficult to identify the boundary of the cell and segment it.

Getting Started

We recommend using Python 3.7 for running the scripts in this repository. The necessary packages can be installed using requirements.txt in the respective folders. Since all of our work has been done on Google Colaboratory, the requirements.txt may have more packages/modules than is actually required and it might take quite long to install everything. Hence,for such a case, the folders of both the models also contain an essential-requirements.txt file which contains some essential packages that need to installed beforehand, while the other fundamental packages can be installed later as their need shows up as an error when running the given training and inference scripts.

To clone this repository:

$ git clone https://github.com/dsciitism/SegPC-2021

To run this repository, following the given steps using the sections mentioned in the subsequent sections:

  1. Prepare the data in COCO format
  2. Run the training script for Cascade Mask RCNN / DetectoRS
  3. Run the inference script for Cascade Mask RCNN / DetectoRS
  4. Run the ensemble script

Data Preparation

Note : This step is not required for inference.

All the models present in the paper require data in COCO format to train. Hence , to train the models the images and masks need to be resized and a json file in COCO format is required. The dataset_preparation.py script in the utils folder can be used to perform these tasks. The following flags need to be used for running the dataset_preparation.py script:

usage: dataset_preparation.py [-h] --img_root IMG_ROOT --mask_root MASK_ROOT --dest_root DEST_ROOT

arguments:
  -h, --help            show this help message and exit
  --img_root IMG_ROOT   path to the folder where the images are saved
  --mask_root MASK_ROOT
                        path to the folder where gt instances are saved
  --dest_root DEST_ROOT
                        path to the folder where the COCO format json file and resized masks and images will be saved

Cascade Mask RCNN

For installation of required packages:

$ cat Cascade_Mask_RCNN_X152/requirements.txt | xargs -n 1 pip3 install

Train

The following flags need to be used to run CMRCNN_X152_train.py:

usage: CMRCNN_X152_train.py [-h] --backbone {Original,Effb5,Transformer_Effb5} --train_data_root TRAIN_DATA_ROOT 
--training_json_path TRAINING_JSON_PATH --val_data_root VAL_DATA_ROOT --validation_json_path VALIDATION_JSON_PATH 
--work_dir WORK_DIR [--iterations ITERATIONS] [--batch_size BATCH_SIZE]

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --train_data_root TRAIN_DATA_ROOT
                        path to training data root folder
  --training_json_path TRAINING_JSON_PATH
                        path to the training json file in COCO format
  --val_data_root VAL_DATA_ROOT
                        path to validation data root folder
  --validation_json_path VALIDATION_JSON_PATH
                        path to validation json file in COCO format
  --work_dir WORK_DIR   path to the folder where models and logs will be saved
  --iterations ITERATIONS
  --batch_size BATCH_SIZE

Inference

The following flags need to be used while running CMRCNN_X152_inference.py:

usage: CMRCNN_X152_inference.py [-h] --backbone {Original,Effb5,Transformer_Effb5} 
--saved_model_path SAVED_MODEL_PATH --input_images_folder INPUT_IMAGES_FOLDER --save_path SAVE_PATH

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --saved_model_path SAVED_MODEL_PATH
                        path to the saved model which will be loaded
  --input_images_folder INPUT_IMAGES_FOLDER
                        path to the folder where images to inference on are
                        kept
  --save_path SAVE_PATH
                        path to the folder where the generated masks will be
                        saved

DetectoRS

Preparation script should be run with the following command before running any other file in the DetectoRS folder :

$ bash mmdetection_preparation.sh

For installation of required packages:

$ cat DetectoRS/requirements.txt | xargs -n 1 pip3 install

Train

The following flags need to be used while running DetectoRS_train.py:

usage: DetectoRS_train.py [-h] --backbone {Original,Effb5,Transformer_Effb5} --train_data_root TRAIN_DATA_ROOT 
--training_json_path TRAINING_JSON_PATH [--train_img_prefix TRAIN_IMG_PREFIX] [--train_seg_prefix TRAIN_SEG_PREFIX] 
--val_data_root VAL_DATA_ROOT --validation_json_path VALIDATION_JSON_PATH [--val_img_prefix VAL_IMG_PREFIX] 
[--val_seg_prefix VAL_SEG_PREFIX] --work_dir WORK_DIR [--epochs EPOCHS] [--batch_size BATCH_SIZE]

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --train_data_root TRAIN_DATA_ROOT
                        path to training data root folder
  --training_json_path TRAINING_JSON_PATH
                        path to the training json file in COCO format
  --train_img_prefix TRAIN_IMG_PREFIX
                        prefix path ,if any, to be added to the train_data_root path to access the input images
  --train_seg_prefix TRAIN_SEG_PREFIX
                        prefix path ,if any, to be added to the train_data_root path to access the semantic masks
  --val_data_root VAL_DATA_ROOT
                        path to validation data root folder
  --validation_json_path VALIDATION_JSON_PATH
                        path to validation json file in COCO format
  --val_img_prefix VAL_IMG_PREFIX
                        prefix path ,if any, to be added to the val_data_root path to access the input images
  --val_seg_prefix VAL_SEG_PREFIX
                        prefix path ,if any, to be added to the val_data_root path to access the semantic masks
  --work_dir WORK_DIR   path to the folder where models and logs will be saved
  --epochs EPOCHS
  --batch_size BATCH_SIZE

Note: DetectoRS requires semantic masks along with instance masks during training , hence the arguments - train_seg_prefix and val_seg_prefix

Inference

The following flags need to be used while running DetectoRS_inference.py:

usage: DetectoRS_inference.py [-h] --backbone {Original,Effb5,Transformer_Effb5} 
--saved_model_path SAVED_MODEL_PATH --input_images_folder INPUT_IMAGES_FOLDER --save_path SAVE_PATH

arguments:
  -h, --help            show this help message and exit
  --backbone {Original,Effb5,Transformer_Effb5}
                        The backbone to be used from the given choices
  --saved_model_path SAVED_MODEL_PATH
                        path to the saved model which will be loaded
  --input_images_folder INPUT_IMAGES_FOLDER
                        path to the folder where images to inference on are kept
  --save_path SAVE_PATH
                        path to the folder where the generated masks will be saved

Ensemble

Apart from the individual models, the paper also presents the scores of ensemble of any three models. The ensemble.py script in the utils folder can be used for making ensemble of the outputs of three models , using the following flags :

usage: ensemble.py [-h] --model1_predictions MODEL1_PREDICTIONS --model2_predictions MODEL2_PREDICTIONS --model3_predictions MODEL3_PREDICTIONS --final_predictions FINAL_PREDICTIONS

arguments:
  -h, --help            show this help message and exit
  --model1_predictions MODEL1_PREDICTIONS
                        path to the predictions of first model
  --model2_predictions MODEL2_PREDICTIONS
                        path to the predictions of second model
  --model3_predictions MODEL3_PREDICTIONS
                        path to the predictions of third model
  --final_predictions FINAL_PREDICTIONS
                        path where the ensembled outputs should be saved

Results and Models

Method Backbone mIoU Download
Cascade Mask R-CNN Original(ResNet) 0.9179 model
DetectoRS Original(ResNet) 0.9219 model
Cascade Mask R-CNN EfficientNet-b5 0.8793 model
DetectoRS EfficientNet-b5 0.9038 model
Cascade Mask R-CNN EfficientNet-b5+ViT 0.9281 model
DetectoRS EfficientNet-b5+ViT 0.9273 model
Owner
Datascience IIT-ISM
Datascience IIT-ISM
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
scikit-learn inspired API for CRFsuite

sklearn-crfsuite sklearn-crfsuite is a thin CRFsuite (python-crfsuite) wrapper which provides interface simlar to scikit-learn. sklearn_crfsuite.CRF i

417 Dec 20, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Zhichun Guo 94 Dec 12, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

王皓波 147 Jan 07, 2023
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
[ICCV2021] Official Pytorch implementation for SDGZSL (Semantics Disentangling for Generalized Zero-Shot Learning)

Semantics Disentangling for Generalized Zero-shot Learning This is the official implementation for paper Zhi Chen, Yadan Luo, Ruihong Qiu, Zi Huang, J

25 Dec 06, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022