Code for the paper "A Study of Face Obfuscation in ImageNet"

Overview

A Study of Face Obfuscation in ImageNet

Example images

Code for the paper:

A Study of Face Obfuscation in ImageNet
Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng, and Olga Russakovsky

@article{yang2021imagenetfaces,
 title={A Study of Face Obfuscation in ImageNet},
 author={Yang, Kaiyu and Yau, Jacqueline and Fei-Fei, Li and Deng, Jia and Russakovsky, Olga},
 journal={arXiv preprint arXiv:2103.06191},
 year={2021}
}

Face Annotation

crowdsourcing/ui.html is the UI used for face annotation. It should be used as an HTML template in simple-amt. Please refer to the documentation of simple-amt for detail. The final face annotations are available for download.

Requirements

  1. Download and install Miniconda Python 3 (Anaconda should also work).
  2. Edit imagenet-face-obfuscation.yaml according to your system. For example, remove - cudatoolkit=11.0 if you don't have a GPU. Change the version of cudatoolkit if necessary. You could see the instructions for installing PyTorch for what CUDA version to put in imagenet-face-obfuscation.yaml.
  3. Install Python dependencies using conda: conda env create -f imagenet-face-obfuscation.yaml && conda activate imagenet-face-obfuscation. If you have troubles with the aforementioned two steps, you may manually install the packages in imagenet-face-obfuscation.yaml in whatever way that works for you.

Data

The face-blurred images are avaialble for download on the ImageNet website. They were generated by running python experiments/blurring.py. Please refer to the source file of experiments/blurring.py for details. For original images, please use the official ILSVRC 2012 dataset.

Save the original images to data/train/ and data/val/; save the blurred images to data/train_blurred/ and data/val_blurred/. In each directory, each category should has a subdirectory, and images should be in the subdirectories. For example: data/val_blurred/n02119022/ILSVRC2012_val_00012978.jpg.

Training and Validation

experiments/trainval.py is the script for training and validation. It is based on an example from PyTorch with only minor changes. Most command-line options in the original example still apply. Please refer to the original documentation for details.
For example, to train a ResNet18 on a single GPU.

python experiments/trainval.py -a resnet18 --learning-rate 0.1 --gpu 0

To train a ResNet50 on all GPUs on the current node:

python experiments/trainval.py -a resnet50 --learning-rate 0.1 --dist-url 'tcp://127.0.0.1:6666' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0

We add a few additional command-line options for training/evaluating on face-obfuscated images:

  • --exp-id EXPID: "EXPID" is an arbitrary experiment identifier. Model checkpoints will be saved to EXPID_model_best.pth and EXPID_model_latest.pth. Validation results will be saved to EXPID_val_results.pickle.
  • --blur-train: Use face-blurred images for training.
  • --blur-val: Use face-blurred images for validation.
  • --overlay: Use overlayed images for both training and validation. It cannot co-occur with --blur-train or --blur-val.

For example, to train and evaluate an AlexNet on face-blurred images:

python experiments/trainval.py -a alexnet --learning_rate 0.01 --gpu 0 --blur-train --blur-val --exp-id alexnet_blurred_train_blurred_val

To train a ResNet152 on face-blurred images but evalaute on original images:

python experiments/trainval.py -a resnet152 --learning-rate 0.1 --dist-url 'tcp://127.0.0.1:6667' --dist-backend 'nccl' --multiprocessing-distributed --world-size 1 --rank 0 --blur-train --exp-id hello_my_experiment

Models pretrained on face-blurred images are available for download here.

Our validation results for all models are available here. Before the next step, please download these pickle files to eval_pickles/. You could also run the training script to produce them by yourself.

Analyses

Please first make sure validation pickle files are in eval_pickles/ and face annotations are in data/face_annotations_ILSVRC.json.

Faces in different supercategories

To produce Table 2 in the paper:

python analysis/supercategories.py
Supercategory              #Categories    #Images    With faces (%)
-----------------------  -------------  ---------  ----------------
clothing.n.01                       49      62471          58.9025
wheeled_vehicle.n.01                44      57055          35.2975
musical_instrument.n.01             26      33779          47.6361
bird.n.01                           59      76536           1.68809
insect.n.01                         27      35097           1.80642

Faces in different categories

To produce Figure 2 in the paper:

python analysis/num_images.py

num_images_per_category num_faces_per_image

Overall validation accuracy

To produce Table 3 in the paper:

python analysis/overall_accuracy.py
model               top1 original    top1 blurred       top1 diff  top5 original    top5 blurred       top5 diff
------------------  ---------------  ---------------  -----------  ---------------  ---------------  -----------
alexnet             56.043 +- 0.258  55.834 +- 0.108        0.209  78.835 +- 0.115  78.547 +- 0.071        0.288
squeezenet1_0       55.989 +- 0.179  55.323 +- 0.039        0.666  78.602 +- 0.172  78.061 +- 0.017        0.541
shufflenet_v2_x1_0  64.646 +- 0.178  64.001 +- 0.068        0.645  85.927 +- 0.024  85.458 +- 0.051        0.47
vgg11               68.905 +- 0.039  68.209 +- 0.128        0.695  88.682 +- 0.025  88.283 +- 0.046        0.399
vgg13               69.925 +- 0.058  69.271 +- 0.103        0.653  89.324 +- 0.064  88.928 +- 0.034        0.396
vgg16               71.657 +- 0.061  70.839 +- 0.047        0.818  90.456 +- 0.067  89.897 +- 0.108        0.559
vgg19               72.363 +- 0.023  71.538 +- 0.032        0.826  90.866 +- 0.053  90.289 +- 0.008        0.577
mobilenet_v2        65.378 +- 0.182  64.367 +- 0.203        1.011  86.651 +- 0.059  85.969 +- 0.060        0.682
densenet121         75.036 +- 0.055  74.244 +- 0.064        0.792  92.375 +- 0.031  91.958 +- 0.100        0.417
densenet201         76.984 +- 0.021  76.551 +- 0.044        0.433  93.480 +- 0.034  93.223 +- 0.068        0.257
resnet18            69.767 +- 0.171  69.012 +- 0.174        0.755  89.223 +- 0.024  88.738 +- 0.031        0.485
resnet34            73.083 +- 0.131  72.307 +- 0.351        0.776  91.289 +- 0.008  90.755 +- 0.130        0.534
resnet50            75.461 +- 0.198  75.003 +- 0.074        0.458  92.487 +- 0.015  92.360 +- 0.071        0.127
resnet101           77.254 +- 0.070  76.735 +- 0.092        0.519  93.591 +- 0.085  93.310 +- 0.052        0.281
resnet152           77.853 +- 0.117  77.279 +- 0.091        0.573  93.933 +- 0.038  93.674 +- 0.011        0.26
average             70.023           69.368                 0.655  89.048           88.630                 0.418

To produce Table B in the paper:

python analysis/overall_accuracy_overlay.py
model               top1 original    top1 overlayed      top1 diff  top5 original    top5 overlayed      top5 diff
------------------  ---------------  -----------------  -----------  ---------------  -----------------  -----------
alexnet             56.043 +- 0.258  55.474 +- 0.236          0.569  78.835 +- 0.115  78.172 +- 0.187          0.663
squeezenet1_0       55.989 +- 0.179  55.039 +- 0.221          0.95   78.602 +- 0.172  77.633 +- 0.108          0.969
shufflenet_v2_x1_0  64.646 +- 0.178  63.684 +- 0.033          0.962  85.927 +- 0.024  85.166 +- 0.167          0.761
vgg11               68.905 +- 0.039  67.834 +- 0.157          1.071  88.682 +- 0.025  87.880 +- 0.036          0.802
vgg13               69.925 +- 0.058  68.749 +- 0.015          1.175  89.324 +- 0.064  88.536 +- 0.062          0.788
vgg16               71.657 +- 0.061  70.568 +- 0.100          1.089  90.456 +- 0.067  89.573 +- 0.019          0.883
vgg19               72.363 +- 0.023  71.206 +- 0.152          1.158  90.866 +- 0.053  90.104 +- 0.050          0.762
mobilenet_v2        65.378 +- 0.182  64.335 +- 0.162          1.043  86.651 +- 0.059  85.728 +- 0.066          0.922
densenet121         75.036 +- 0.055  74.062 +- 0.048          0.974  92.375 +- 0.031  91.700 +- 0.025          0.675
densenet201         76.984 +- 0.021  76.056 +- 0.073          0.928  93.480 +- 0.034  92.868 +- 0.064          0.612
resnet18            69.767 +- 0.171  68.938 +- 0.069          0.829  89.223 +- 0.024  88.665 +- 0.110          0.557
resnet34            73.083 +- 0.131  72.369 +- 0.099          0.714  91.289 +- 0.008  90.699 +- 0.020          0.589
resnet50            75.461 +- 0.198  74.916 +- 0.007          0.545  92.487 +- 0.015  92.154 +- 0.027          0.333
resnet101           77.254 +- 0.070  76.677 +- 0.102          0.577  93.591 +- 0.085  93.114 +- 0.077          0.476
resnet152           77.853 +- 0.117  76.978 +- 0.149          0.875  93.933 +- 0.038  93.342 +- 0.246          0.592
average             70.023           69.126                   0.897  89.048           88.356                   0.692

Category-wise accuracies

To produce Table 4 in the paper:

python analysis/categorywise_accuracies.py
Category                 top1 original    top1 blurred       top1 diff  top5 original    top5 blurred       top5 diff  AP original      AP blurred         AP diff
-----------------------  ---------------  ---------------  -----------  ---------------  ---------------  -----------  ---------------  ---------------  ---------
eskimo_dog.n.01          50.800 +- 1.105  37.956 +- 0.412       12.844  95.467 +- 0.377  95.156 +- 0.166        0.311  19.378 +- 0.765  19.908 +- 0.481     -0.529
siberian_husky.n.01      46.267 +- 1.792  63.200 +- 0.762      -16.933  96.978 +- 0.440  97.244 +- 0.251       -0.267  29.198 +- 0.283  29.616 +- 0.485     -0.418
projectile.n.01          35.556 +- 0.880  21.733 +- 0.998       13.822  86.178 +- 0.412  85.467 +- 0.377        0.711  23.098 +- 0.365  22.537 +- 0.510      0.561
missile.n.01             31.556 +- 0.708  45.822 +- 0.817      -14.267  81.511 +- 0.725  81.822 +- 0.382       -0.311  20.404 +- 0.264  21.120 +- 0.633     -0.716
tub.n.02                 35.511 +- 1.462  27.867 +- 0.576        7.644  79.422 +- 0.600  75.644 +- 0.453        3.778  19.853 +- 0.430  18.778 +- 0.231      1.075
bathtub.n.01             35.422 +- 0.988  42.533 +- 0.377       -7.111  78.933 +- 0.327  80.800 +- 1.236       -1.867  27.378 +- 0.757  25.079 +- 0.584      2.299
american_chameleon.n.01  62.978 +- 0.350  54.711 +- 1.214        8.267  96.978 +- 0.491  96.578 +- 0.453        0.4    39.963 +- 0.184  39.292 +- 0.525      0.671
green_lizard.n.01        42.000 +- 0.566  45.556 +- 1.238       -3.556  91.289 +- 0.274  89.689 +- 0.166        1.6    22.615 +- 0.775  22.407 +- 0.095      0.208

Credits

Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads-Tutorial-3 Testing the Facial Emotion Recognition (FER) algorithm on animations

PegHeads Inc 2 Jan 03, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Ensembling Off-the-shelf Models for GAN Training

Data-Efficient GANs with DiffAugment project | paper | datasets | video | slides Generated using only 100 images of Obama, grumpy cats, pandas, the Br

MIT HAN Lab 1.2k Dec 26, 2022